Intrinsic electron mobility and lattice thermal conductivity of β-Si3N4 from first-principles

被引:2
|
作者
Li, Yuan [1 ]
Duan, Xinlei [2 ]
Fu, Zhiwei [2 ,3 ]
Zhao, Huanhuan [4 ]
He, Yun-Long [1 ]
Lu, Xiao-Li [1 ]
Yang, Jia-Yue [2 ,4 ]
Ma, Xiao-Hua [1 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Bandgap Semicond Te, Xian 710071, Shaanxi, Peoples R China
[2] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Shandong, Peoples R China
[3] Minist Ind & Informat Technol, Sci & Technol Reliabil Phys & Applicat Elect Comp, Elect Res Inst 5, Guangzhou 511370, Peoples R China
[4] Shandong Univ, Inst Frontier & Interdisciplinary, Opt & Thermal Radiat Res Ctr, Qingdao 266237, Shandong, Peoples R China
关键词
Electron mobility; Polar optical phonons; Momentum tensor potential; Thermal transport; SILICON-NITRIDE; MICROSTRUCTURE; APPROXIMATION; DEPOSITION; TRANSPORT; ENERGY; RATES;
D O I
10.1016/j.ssc.2023.115066
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Silicon nitride based materials have emerged as the promising candidates for high-power electronics and nextgeneration gate dielectrics. Herein, the crucial characteristics of electron mobility and lattice thermal conductivity of /%-Si3N4 are investigated from first-principles. The predicted electron mobility and averaged lattice thermal conductivity is 228.4 cm2/Vs and 325.06 W/m center dot K at 300 K, which demonstrates a good agreement with literature data. The electron mobility exhibits strong temperature-dependence at a low carrier concentration where the polar-optical phonon scattering dominates. For the heavy doping case, the ionized impurity scattering becomes dominant. A well-trained momentum tensor potential (MTP) with an accuracy comparable to density functional theory shows advantages in predicting thermal transport properties over a large-scale system containing thousands of atoms. The relaxation lifetimes for heat-carrying acoustic phonons are over tens of picoseconds which can explain the high thermal conductivity of /%-Si3N4, but the nanoscale grain size crucially limits the thermal transport properties.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] First-principles study of electron trapping by intrinsic surface states on β-Si3N4 (0001)
    Bermudez, V. M.
    SURFACE SCIENCE, 2020, 691
  • [2] Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations
    Liu, Gang
    Wang, Haifeng
    Gao, Yan
    Zhou, Jian
    Wang, Hui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (04) : 2843 - 2849
  • [3] Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations
    Fang, CM
    de Wijs, GA
    Hintzen, HT
    de With, G
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (09) : 5175 - 5180
  • [4] Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations
    De Wijs, G.A. (dewijs@sci.kun.nl), 1600, American Institute of Physics Inc. (93):
  • [5] First-principles lattice dynamics calculations of the phase boundary between β-Si3N4 and γ-Si3N4 at elevated temperatures and pressures
    Togo, Atsushi
    Kroll, Peter
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (13) : 2255 - 2259
  • [6] Effect of lattice impurities on the thermal conductivity of β-Si3N4
    Yokota, H
    Ibukiyama, M
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (01) : 55 - 60
  • [7] Effect of lattice defects on the thermal conductivity of β-Si3N4
    Yokota, H
    Abe, H
    Ibukiyama, M
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (10) : 1751 - 1759
  • [8] First-principles Study of Piezoelectricity of Si3N4 Crystal
    Zeng Yi-Ming
    Zheng Yan-Qing
    Xin Jun
    Kong Hai-Kuan
    Chen Hui
    Tu Xiao-Niu
    Shi Er-Wei
    JOURNAL OF INORGANIC MATERIALS, 2011, 26 (02) : 180 - 184
  • [9] Optical Properties of β-Si3N4 Studied from First-Principles Method
    Chen Dong
    Yang Kui
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 3253 - +
  • [10] Thermal conductivity of β-Si3N4:: II, effect of lattice oxygen
    Kitayama, M
    Hirao, K
    Tsuge, A
    Watari, K
    Toriyama, M
    Kanzaki, S
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (08) : 1985 - 1992