PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual Machine Resource Usage Prediction

被引:7
|
作者
Leka, Habte Lejebo [1 ]
Fengli, Zhang [1 ]
Kenea, Ayantu Tesfaye [2 ]
Hundera, Negalign Wake [3 ]
Tohye, Tewodros Gizaw [1 ]
Tegene, Abebe Tamrat [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610056, Peoples R China
[2] Adama Sci & Technol Univ, Sch Elect Engn & Comp, Dept Comp Sci & Engn, POB 1888, Adama, Ethiopia
[3] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua 321004, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
BiLSTM; cloud system; ensemble learning; PSO; LSTM; GRU; WORKLOAD PREDICTION; NEURAL-NETWORK; MODEL; ENERGY; EFFICIENT; CONSOLIDATION; MANAGEMENT;
D O I
10.3390/sym15030613
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To meet the increasing demand for its services, a cloud system should make optimum use of its available resources. Additionally, the high and low oscillations in cloud workload are another significant symmetrical issue that necessitates consideration. A suggested particle swarm optimization (PSO)-based ensemble meta-learning workload forecasting approach uses base models and the PSO-optimized weights of their network inputs. The proposed model employs a blended ensemble learning strategy to merge three recurrent neural networks (RNNs), followed by a dense neural network layer. The CPU utilization of GWA-T-12 and PlanetLab traces is used to assess the method's efficacy. In terms of RMSE, the approach is compared to the LSTM, GRU, and BiLSTM sub-models.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Ensemble learning based predictive framework for virtual machine resource request prediction
    Kumar, Jitendra
    Singh, Ashutosh Kumar
    Buyya, Rajkumar
    [J]. NEUROCOMPUTING, 2020, 397 : 20 - 30
  • [2] A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment
    Rahmanian, Ali Asghar
    Ghobaei-Arani, Mostafa
    Tofighy, Sajjad
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 : 54 - 71
  • [3] Discrete PSO-based workload optimization in virtual machine placement
    Jianen Yan
    Hongli Zhang
    Haiyan Xu
    Zhaoxin Zhang
    [J]. Personal and Ubiquitous Computing, 2018, 22 : 589 - 596
  • [4] Discrete PSO-based workload optimization in virtual machine placement
    Yan, Jianen
    Zhang, Hongli
    Xu, Haiyan
    Zhang, Zhaoxin
    [J]. PERSONAL AND UBIQUITOUS COMPUTING, 2018, 22 (03) : 589 - 596
  • [5] A Meta-Learning Approach to Error Prediction
    Guimaraes, Miguel
    Carneiro, Davide
    [J]. PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021), 2021,
  • [6] Signature-based Adaptive Cloud Resource Usage Prediction Using Machine Learning and Anomaly Detection
    Sus, Wiktor
    Nawrocki, Piotr
    [J]. JOURNAL OF GRID COMPUTING, 2024, 22 (02)
  • [7] A load prediction model for cloud computing using PSO-based weighted wavelet support vector machine
    Zhong, Wei
    Zhuang, Yi
    Sun, Jian
    Gu, Jingjing
    [J]. APPLIED INTELLIGENCE, 2018, 48 (11) : 4072 - 4083
  • [8] A load prediction model for cloud computing using PSO-based weighted wavelet support vector machine
    Wei Zhong
    Yi Zhuang
    Jian Sun
    Jingjing Gu
    [J]. Applied Intelligence, 2018, 48 : 4072 - 4083
  • [9] Is Machine Learning Necessary for Cloud Resource Usage Forecasting?
    Christofidi, Georgia
    Papaioannou, Konstantinos
    Doudali, Thaleia Dimitra
    [J]. PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON CLOUD COMPUTING, SOCC 2023, 2023, : 544 - 554
  • [10] A PSO-Based Algorithm for Load Balancing in Virtual Machines of Cloud Computing Environment
    Liu, Zhanghui
    Wang, Xiaoli
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 142 - 147