Dual Circle Contrastive Learning-Based Blind Image Super-Resolution

被引:4
|
作者
Qiu, Yajun [1 ]
Zhu, Qiang [1 ]
Zhu, Shuyuan [1 ]
Zeng, Bing [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Degradation; Kernel; Superresolution; Task analysis; Training; Estimation; Probabilistic logic; Blind image super-resolution; degradation; extraction; contrastive learning; information distillation; NETWORK;
D O I
10.1109/TCSVT.2023.3297673
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Blind image super-resolution (BISR) aims to construct high-resolution image from low-resolution (LR) image that contains unknown degradation. Although the previous methods demonstrated impressive performance by introducing the degradation representation in BISR task, there still exist two problems in most of them. First, they ignore the degradation characteristics of different image regions when generating degradation representation. Second, they lack effective supervision on the generation of both degradation representation and super-resolution result. To solve these problems, we propose the dual circle contrastive learning (DCCL) with the high-efficiency modules to implement BISR. In our proposed method, we design the degradation extraction network to obtain the degradation representations from different texture regions of LR image. Meanwhile, we propose DCCL coupled with the degrading network to guarantee the obtained degradation representation to contain the degradation of LR image as much as possible. The application of DCCL also makes the SR results contain degradation as little as possible. Additionally, we develop an information distillation module for our proposed BISR model to guarantee the SR images with high quality. The experimental results demonstrate that our proposed method achieves the state-of-the-art BISR performance.
引用
收藏
页码:1757 / 1771
页数:15
相关论文
共 50 条
  • [1] Weakly-supervised contrastive learning-based implicit degradation modeling for blind image super-resolution
    Zhang, Yongfei
    Dong, Ling
    Yang, Hong
    Qing, Linbo
    He, Xiaohai
    Chen, Honggang
    KNOWLEDGE-BASED SYSTEMS, 2022, 249
  • [2] A contrastive learning-based iterative network for remote sensing image super-resolution
    Yan Wang
    Minggang Dong
    Wei Ye
    Deao Liu
    Guojun Gan
    Multimedia Tools and Applications, 2024, 83 : 8331 - 8357
  • [3] A contrastive learning-based iterative network for remote sensing image super-resolution
    Wang, Yan
    Dong, Minggang
    Ye, Wei
    Liu, Deao
    Gan, Guojun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8331 - 8357
  • [4] Learning-Based Nonparametric Image Super-Resolution
    Shyamsundar Rajaram
    Mithun Das Gupta
    Nemanja Petrovic
    Thomas S. Huang
    EURASIP Journal on Advances in Signal Processing, 2006
  • [5] Learning-based nonparametric image super-resolution
    Rajaram, Shyamsundar
    Das Gupta, Mithun
    Petrovic, Nemanja
    Huang, Thomas S.
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1) : 1 - 11
  • [6] Local Learning-Based Image Super-Resolution
    Lu, Xiaoqiang
    Yuan, Haoliang
    Yuan, Yuan
    Yan, Pingkun
    Li, Luoqing
    Li, Xuelong
    2011 IEEE 13TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2011,
  • [7] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [8] ITERATIVE KERNEL RECONSTRUCTION FOR DEEP LEARNING-BASED BLIND IMAGE SUPER-RESOLUTION
    Yildirim, Suleyman
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3251 - 3255
  • [9] Blind super-resolution using a learning-based approach
    Bégin, I
    Ferrie, FP
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 85 - 89
  • [10] Learning-Based Quality Assessment for Image Super-Resolution
    Zhao, Tiesong
    Lin, Yuting
    Xu, Yiwen
    Chen, Weiling
    Wang, Zhou
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3570 - 3581