Study of the stability to an anisotropic reaction-diffusion equation

被引:0
|
作者
Zhan, Huashui [1 ]
机构
[1] Xiamen Univ Technol, Sch Math & Stat, Xiamen 361024, Fujian, Peoples R China
来源
关键词
Anisotropic reaction-diffusion equation; Stability; Partial boundary value condition; Entropy solution; BOUNDARY-VALUE-PROBLEM; DEGENERATE PARABOLIC EQUATIONS; DIRICHLET PROBLEMS; ENTROPY SOLUTIONS; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00033-023-02072-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability of solutions to an anisotropic reaction-diffusion equation is considered in this paper. Since the equation generally is with hyperbolic-parabolic mixed type and the Dirichlet boundary value condition may be overdetermined, how to impose a suitably partial boundary value condition has been a valuable problem for a long time. A new partial boundary value condition is given. Based on this new partial boundary value condition, the stability of weak solutions is established.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Study of the stability to an anisotropic reaction–diffusion equation
    Huashui Zhan
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [2] Front dynamics for an anisotropic reaction-diffusion equation
    Fedotov, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (40): : 7033 - 7042
  • [3] Global stability in a nonlocal reaction-diffusion equation
    Finkelshtein, Dmitri
    Kondratiev, Yuri
    Molchanov, Stanislav
    Tkachov, Pasha
    STOCHASTICS AND DYNAMICS, 2018, 18 (05)
  • [4] Global stability of reaction-diffusion equation with nonlocal delay
    Qiu, Huanhuan
    Ren, Beijia
    Zou, Rong
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [5] Stability of Equilibrium Solutions of a Nonlinear Reaction-Diffusion Equation
    Hernandez Melo, Cesar Adolfo
    Demetrio, Luiz Felipe
    BOLETIN DE MATEMATICAS, 2020, 27 (01): : 1 - 14
  • [6] Stability analysis of an ordinary differential equation interconnected with the reaction-diffusion equation
    Bajodek, Mathieu
    Seuret, Alexandre
    Gouaisbaut, Frederic
    AUTOMATICA, 2022, 145
  • [7] Stability and random attractors for a reaction-diffusion equation with multiplicative noise
    Caraballo, T
    Langa, JA
    Robinson, JC
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (04) : 875 - 892
  • [8] Stability and bifurcation analysis of a reaction-diffusion equation with distributed delay
    Zuo, Wenjie
    Song, Yongli
    NONLINEAR DYNAMICS, 2015, 79 (01) : 437 - 454
  • [9] ON REACTION-DIFFUSION EQUATION WITH ABSORPTION
    王立文
    陈庆益
    ActaMathematicaScientia, 1993, (02) : 147 - 152
  • [10] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170