The Synergistic Effect of Graphene/Carboxymethyl Cellulose/Hydroxyapatite Nanocomposite on Controlled Drug Delivery

被引:0
|
作者
Taghzouti, Othmane Khalifi [1 ]
Bricha, Meriame [1 ]
Nouneh, Khalid [2 ]
Ballamurugan, Anbalagan [3 ]
El Mabrouk, Khalil [1 ]
机构
[1] Euromed Univ Fes, Euromed Res Ctr, Ecocampus,Meknes Rd, Fes 30300, Morocco
[2] Ibn Tofail Univ, Dept Phys, Lab Phys Condensed Matter LPMC, Kenitra, Morocco
[3] Bharathiar Univ, Dept Nanosci & Technol, Nanobiomaterials & Tissue Engn Lab, Coimbatore 641046, Tamil Nadu, India
来源
EGYPTIAN JOURNAL OF CHEMISTRY | 2023年 / 66卷 / 07期
关键词
Carboxymethyl cellulose; Hydroxyapatite; Graphene oxide; drug delivery; Rheological measurements; FUNCTIONALIZED GRAPHENE OXIDE; CARBOXYMETHYL CELLULOSE; HYDROXYAPATITE; RELEASE; NANOGELS; MINERALIZATION; NANOPARTICLES; REDUCTION; COMPOSITE; BIOCOMPATIBILITY;
D O I
10.21608/EJCHEM.2022.112368.5111
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new preparation method was reported to synthesize graphene GO - carboxymethyl cellulose CMC and hydroxyapatite HA (GO/CMC/HA). This new bio-nanocomposite was studied to control the loading and release cycle of amoxicillin drugs. The drug loading kinetics and release were studied with respect to the concentration of CMC of the drug carrier while keeping the concentration of GO and HA constant. The targeted delivery of amoxicillin was aimed at using these ternary nanocomposites. The evidence of functional groups and phase purity was analyzed using FTIR spectroscopy and X-ray diffraction techniques. The morphological features were studied using scanning electron microscopy. The thermal property of the developed materials was evaluated by thermogravimetric analysis (TGA). The elastic and storage modulus (G' and G") as well as the complex viscosity (& eta; *) were recorded for the various concentration of CMC through rheological measurements. The efficiency of the drug delivery was studied using a diffusion mechanism. All the physio-chemical characterizations and rheological studies showed the efficacious synthesis of the new bio- nanocomposites GO/CMC/HA, through in situ precipitation and presents a good candidate to control the drug release applications.
引用
收藏
页码:451 / 464
页数:14
相关论文
共 50 条
  • [1] Hydroxyapatite-carboxymethyl cellulose nanocomposite biomaterial
    Zakharov, NA
    Ezhova, ZA
    Koval', EM
    Kalinnikov, VT
    Chalykh, AE
    INORGANIC MATERIALS, 2005, 41 (05) : 509 - 515
  • [2] Hydroxyapatite-Carboxymethyl Cellulose Nanocomposite Biomaterial
    N. A. Zakharov
    Zh. A. Ezhova
    E. M. Koval’
    V. T. Kalinnikov
    A. E. Chalykh
    Inorganic Materials, 2005, 41 : 509 - 515
  • [3] pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier
    Wang, Ren
    Shou, Dan
    Lv, Ouyang
    Kong, Yong
    Deng, Linhong
    Shen, Jian
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 103 : 248 - 253
  • [4] Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system
    Javanbakht, Siamak
    Namazi, Hassan
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 87 : 50 - 59
  • [5] Carboxymethyl cellulose-grafted graphene oxide for efficient antitumor drug delivery
    Jiao, Zepeng
    Zhang, Bin
    Li, Chunya
    Kuang, Weicong
    Zhang, Jingxian
    Xiong, Yongqiang
    Tan, Shaozao
    Cai, Xiang
    Huang, Langhuan
    NANOTECHNOLOGY REVIEWS, 2018, 7 (04) : 291 - 301
  • [6] Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system
    Luo, Honglin
    Ao, Haiyong
    Li, Gen
    Li, Wei
    Xiong, Guangyao
    Zhu, Yong
    Wan, Yizao
    CURRENT APPLIED PHYSICS, 2017, 17 (02) : 249 - 254
  • [7] Hexamethylene diamine/carboxymethyl cellulose grafted on magnetic nanoparticles for controlled drug delivery
    Movagharnezhad, Nasim
    Moghadam, Peyman Najafi
    POLYMER BULLETIN, 2017, 74 (11) : 4645 - 4658
  • [8] Hexamethylene diamine/carboxymethyl cellulose grafted on magnetic nanoparticles for controlled drug delivery
    Nasim Movagharnezhad
    Peyman Najafi Moghadam
    Polymer Bulletin, 2017, 74 : 4645 - 4658
  • [9] Chelators influenced synthesis of chitosan–carboxymethyl cellulose microparticles for controlled drug delivery
    Antony V. Samrot
    Tatipamula Akanksha
    S. Jahnavi
    Sheryl-Ann Padmanaban
    Ujjala Philip
    Arul Maximus Burman
    Applied Nanoscience, 2016, 6 : 1219 - 1231
  • [10] Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system
    Rao, Ziqie
    Ge, Hongyu
    Liu, Liangling
    Zhu, Chen
    Min, Lian
    Liu, Meng
    Fan, Lihong
    Li, Dan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 107 : 1184 - 1192