On the stochastic flow generated by the one default model in one-dimensional case

被引:0
|
作者
Khatir, Yamina [1 ]
Benziadi, Fatima [1 ]
Kandouci, Abdeldjebbar [1 ]
机构
[1] Univ Saida, Dept Math, POB 138 En Nasr, Saida 20000, Algeria
关键词
Credit risk; stochastic flow; stochastic differential equations; diffeomorphism; DIFFERENTIAL-EQUATIONS; HOMEOMORPHISM FLOWS; SDES; DIFFEOMORPHISMS; COEFFICIENTS; CONTINUITY; MANIFOLDS; MODULUS; DRIVEN; MOTION;
D O I
10.1515/rose-2022-2093
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we will study an important property on the regularity of the trajectories of the stochastic flow generated by a famous model in finance. More precisely, we prove the differentiability with respect to initial data of the solution of the stochastic differential equation associated with this model based on Gronwall's lemma, Ito's isometry and Burkholder-Davis-Gundy's and Holder's inequalities. This is the main motivation of our research.
引用
收藏
页码:9 / 23
页数:15
相关论文
共 50 条
  • [1] THE HOMEOMORPHIC PROPERTY OF THE STOCHASTIC FLOW GENERATED BYTHE ONE-DEFAULT MODEL IN ONE DIMENSIONAL CASE
    Benziadi, Fatima
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 501 - 518
  • [2] On the Hughes' model for pedestrian flow: The one-dimensional case
    Di Francesco, Marco
    Markowich, Peter A.
    Pietschmann, Jan-Frederik
    Wolfram, Marie-Therese
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) : 1334 - 1362
  • [3] Clustering in a stochastic model of one-dimensional gas
    Vysotsky, Vladislav V.
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (03): : 1026 - 1058
  • [4] Stochastic resonance in a one-dimensional Ising model
    Brey, J. J.
    Prados, A.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 216 (06):
  • [5] One-dimensional stochastic model of diamond growth
    Frenklach, M
    EVOLUTION OF EPITAXIAL STRUCTURE AND MORPHOLOGY, 1996, 399 : 83 - 88
  • [6] STOCHASTIC-MODEL OF A ONE-DIMENSIONAL FLUID
    FESCIYAN, S
    FRISCH, HL
    JOURNAL OF STATISTICAL PHYSICS, 1975, 12 (02) : 153 - 162
  • [7] ANOMALOUS TRANSPORT - A ONE-DIMENSIONAL STOCHASTIC-MODEL
    ZUMOFEN, G
    KLAFTER, J
    BLUMEN, A
    CHEMICAL PHYSICS, 1990, 146 (03) : 433 - 444
  • [8] A Note on One-Dimensional Stochastic Equations
    Hans-Jurgen Engelbert
    Czechoslovak Mathematical Journal, 2001, 51 : 701 - 712
  • [9] Stochastic ripening of one-dimensional nanostructures
    Koh, SJ
    Ehrlich, G
    PHYSICAL REVIEW B, 2000, 62 (16) : 10645 - 10648
  • [10] A note on one-dimensional stochastic equations
    Engelbert, HJ
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 701 - 712