A model of a nonisothermal two-phase flow of compressible fluids

被引:0
|
作者
Feireisl, Eduard [1 ]
Petcu, Madalina [2 ,3 ,4 ]
She, Bangwei [1 ,5 ,6 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Prague, Czech Republic
[2] Univ Poitiers, Lab Math & Applicat, UMR CNRS 7348 SP2MI, Chasseneuil, France
[3] Romanian Acad, Inst Math, Bucharest, Romania
[4] Romanian Acad, Inst Stat & Appl Math, Bucharest, Romania
[5] Charles Univ Prague, Dept Math Anal, Prague, Czech Republic
[6] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing, Peoples R China
关键词
Allen-Cahn equation; compressible fluid; Navier-Stokes-Fourier system; two-phase flow; weak solution; DIFFUSE INTERFACE MODEL; EQUATIONS;
D O I
10.1002/mma.9059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a simple model of the time evolution of a binary mixture of compressible fluids including the thermal effects. Despite its apparent simplicity, the model is thermodynamically consistent admitting an entropy balance equation. We introduce a suitable weak formulation of the problem based on a combination of the entropy inequality with the total energy conservation principle. Finally, we show compactness of any bounded family of weak solutions and establish a global existence result.
引用
收藏
页码:9362 / 9377
页数:16
相关论文
共 50 条
  • [1] On a diffuse interface model for a two-phase flow of compressible viscous fluids
    Abels, Helmut
    Feireisl, Eduard
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (02) : 659 - 698
  • [2] Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media
    Jurak, Mladen
    Koldoba, Alexandre
    Konyukhov, Andrey
    Pankratov, Leonid
    [J]. COMPTES RENDUS MECANIQUE, 2019, 347 (12): : 920 - 929
  • [3] ANALYSIS OF A PHASE-FIELD MODEL FOR TWO-PHASE COMPRESSIBLE FLUIDS
    Feireisl, Eduard
    Petzeltova, Hana
    Rocca, Elisabetta
    Schimperna, Giulio
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07): : 1129 - 1160
  • [4] A NON-ISOTHERMAL TWO-PHASE FLOW MODEL FOR COMPRESSIBLE, SUPERCRITICAL FLUIDS IN POROUS MEDIA
    Boettcher, Norbert
    Park, Chan-Hee
    Kolditz, Olaf
    Liedl, Rudolf
    [J]. PROCEEDINGS OF THE XVIII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES (CMWR 2010), 2010, : 271 - 278
  • [5] THE CAUCHY PROBLEM OF A TWO-PHASE FLOW MODEL FOR A MIXTURE OF NON-INTERACTING COMPRESSIBLE FLUIDS
    Cheng, Zhen
    Wang, Wenjun
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (12) : 4155 - 4176
  • [6] Nonisothermal two-phase flow in a vertical well
    R. F. Sharafutdinov
    T. R. Khabirov
    A. A. Sadretdinov
    [J]. Journal of Applied Mechanics and Technical Physics, 2015, 56 : 177 - 181
  • [7] Nonisothermal two-phase flow in a vertical well
    Sharafutdinov, R. F.
    Khabirov, T. R.
    Sadretdinov, A. A.
    [J]. JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2015, 56 (02) : 177 - 181
  • [8] Central Upwind Scheme for a Compressible Two-Phase Flow Model
    Ahmed, Munshoor
    Saleem, M. Rehan
    Zia, Saqib
    Qamar, Shamsul
    [J]. PLOS ONE, 2015, 10 (06):
  • [9] Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids
    Eleuteri, Michela
    Rocca, Elisabetta
    Schimperna, Giulio
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06): : 1431 - 1454
  • [10] GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL FOR THE TWO-PHASE FLOW OF COMPRESSIBLE VISCOUS FLUIDS IN 1D
    Ding, Shijin
    Li, Yinghua
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 1055 - 1086