Background There is considerable geographic heterogeneity in obesity prevalence across counties in the United States. Machine learning algorithms accurately predict geographic variation in obesity prevalence, but the models are often uninterpretable and viewed as a black-box. Objective The goal of this study is to extract knowledge from machine learning models for county-level variation in obesity prevalence. Methods This study shows the application of explainable artificial intelligence methods to machine learning models of cross-sectional obesity prevalence data collected from 3,142 counties in the United States. County-level features from 7 broad categories: health outcomes, health behaviors, clinical care, social and economic factors, physical environment, demographics, and severe housing conditions. Explainable methods applied to random forest prediction models include feature importance, accumulated local effects, global surrogate decision tree, and local interpretable model-agnostic explanations. Results The results show that machine learning models explained 79% of the variance in obesity prevalence, with physical inactivity, diabetes, and smoking prevalence being the most important factors in predicting obesity prevalence. Conclusions Interpretable machine learning models of health behaviors and outcomes provide substantial insight into obesity prevalence variation across counties in the United States.
机构:
Emory Univ, Sch Med, Div Pulm Allergy Crit Care & Sleep Med, Atlanta, GA 30322 USAEmory Univ, Sch Med, Div Pulm Allergy Crit Care & Sleep Med, Atlanta, GA 30322 USA
Kempker, Jordan A.
Stearns, Erin
论文数: 0引用数: 0
h-index: 0
机构:
EpiMap Inc, Seattle, WA USAEmory Univ, Sch Med, Div Pulm Allergy Crit Care & Sleep Med, Atlanta, GA 30322 USA
Stearns, Erin
Peterson, Emily N.
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA USAEmory Univ, Sch Med, Div Pulm Allergy Crit Care & Sleep Med, Atlanta, GA 30322 USA
Peterson, Emily N.
Waller, Lance A.
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA USAEmory Univ, Sch Med, Div Pulm Allergy Crit Care & Sleep Med, Atlanta, GA 30322 USA
机构:
Univ Alabama, Dept Geog, Tuscaloosa, AL USA
Natl Univ Sci & Technol, Inst Geog Informat Syst, Islamabad, PakistanUniv Alabama, Dept Geog, Tuscaloosa, AL USA
Khan, Shahid Nawaz
Khan, Abid Nawaz
论文数: 0引用数: 0
h-index: 0
机构:
Tampere Univ, Fac Informat Technol & Commun Sci Data Sci, Tampere, FinlandUniv Alabama, Dept Geog, Tuscaloosa, AL USA
Khan, Abid Nawaz
Tariq, Aqil
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Coll Forest Resources, Dept Wildlife Fisheries & Aquaculture, 775 Stone Blvd, Starkville, MS 39762 USAUniv Alabama, Dept Geog, Tuscaloosa, AL USA
Tariq, Aqil
Lu, Linlin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing, Peoples R ChinaUniv Alabama, Dept Geog, Tuscaloosa, AL USA
Lu, Linlin
Malik, Naeem Abbas
论文数: 0引用数: 0
h-index: 0
机构:
PMAS Arid Agr Univ, Dept Remote Sensing & GIS, Rawalpindi, PakistanUniv Alabama, Dept Geog, Tuscaloosa, AL USA
Malik, Naeem Abbas
Umair, Muhammad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Dept Geog, Montreal, PQ, CanadaUniv Alabama, Dept Geog, Tuscaloosa, AL USA
Umair, Muhammad
Hatamleh, Wesam Atef
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh, Saudi ArabiaUniv Alabama, Dept Geog, Tuscaloosa, AL USA
Hatamleh, Wesam Atef
Zawaideh, Farah Hanna
论文数: 0引用数: 0
h-index: 0
机构:
Irbid Natl Univ, Fac Financial & Business Sci, Dept Business Intelligence & Data Anal, Irbid, JordanUniv Alabama, Dept Geog, Tuscaloosa, AL USA