Quasinormal modes of a holonomy corrected Schwarzschild black hole

被引:10
|
作者
Moreira, Zeus S. [1 ,2 ,3 ]
Lima Jr, Haroldo C. D. [1 ,2 ,3 ]
Crispino, Luis C. B. [1 ,2 ,3 ]
Herdeiro, Carlos A. R. [1 ,2 ,3 ]
机构
[1] Univ Fed Para, Programa Posgrad Fis, BR-66075110 Belem, PA, Brazil
[2] Univ Aveiro, Dept Matemat, Campus Santiago, P-3810183 Aveiro, Portugal
[3] Ctr Res & Dev Math & Applicat CIDMA, Campus Santiago, P-3810183 Aveiro, Portugal
关键词
GRAVITATIONAL COLLAPSE; VARIABLES; GEOMETRY; GRAVITY; ENERGY; FIELD; MASS;
D O I
10.1103/PhysRevD.107.104016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the quasinormal modes (QNMs) of a recently obtained solution of a Schwarzschild black hole (BH) with corrections motivated by Loop Quantum Gravity (LQG). This spacetime is regular everywhere and presents the global structure of a black bounce, whose radius depends on a LQG parameter. We focus on the investigation of massless scalar field perturbations over the spacetime. We compute the QNMs with the Wentzel-Kramers-Brillouin approximation as well as the continued fraction method. The QNM frequency orbits, for l 1/4 0 and n > 0, where l and n are the multipole and overtone numbers, respectively, are self-intersecting, spiraling curves in the complex plane. These orbits accumulate to a fixed complex value corresponding to the QNMs of the extremal case. We obtain that, for small values of the LQG parameter, the overall damping decreases as we increase the LQG parameter. Moreover, the spectrum of the quantum corrected black hole exhibits an oscillatory pattern, which might imply in the existence of QNMs with vanishing real part. This pattern suggests that the limit n -> infinity for the real part of the QNMs is not well defined, which differs from Schwarzschild's case. We also analyze the time-domain profiles for the scalar perturbations, showing that the LQG correction does not alter the Schwarzschild power-law tail. We compute the fundamental mode from the time profile by means of the Prony method, obtaining excellent agreement with the two previously mentioned methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Quasinormal modes of the EGUP-corrected Schwarzschild black hole
    H. Chen
    T. Sathiyaraj
    H. Hassanabadi
    Y. Yang
    Z.-W. Long
    F.-Q. Tu
    [J]. Indian Journal of Physics, 2023, 97 : 4481 - 4489
  • [2] Quasinormal modes of the EGUP-corrected Schwarzschild black hole
    Chen, H.
    Sathiyaraj, T.
    Hassanabadi, H.
    Yang, Y.
    Long, Z. -W.
    Tu, F. -Q.
    [J]. INDIAN JOURNAL OF PHYSICS, 2023, 97 (14) : 4481 - 4489
  • [3] Holonomy corrected Schwarzschild black hole lensing
    Soares, A. R.
    Pereira, C. F. S.
    Vitoria, R. L. L.
    Rocha, Erick Melo
    [J]. PHYSICAL REVIEW D, 2023, 108 (12)
  • [4] Quasinormal Modes of a Quantum-Corrected Schwarzschild Black Hole for Electromagnetic Perturbation
    Chunyan Wang
    Yajun Gao
    Wenbo Ding
    Qingxu Yu
    [J]. Journal of Astrophysics and Astronomy, 2017, 38
  • [5] Quasinormal Modes of a Quantum-Corrected Schwarzschild Black Hole for Electromagnetic Perturbation
    Wang, Chunyan
    Gao, Yajun
    Ding, Wenbo
    Yu, Qingxu
    [J]. JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2017, 38 (04)
  • [6] Quasinormal modes of an improved Schwarzschild black hole
    Rincon, Angel
    Panotopoulos, Grigoris
    [J]. PHYSICS OF THE DARK UNIVERSE, 2020, 30
  • [7] Dirac quasinormal modes of Schwarzschild black hole
    Jing, JL
    [J]. PHYSICAL REVIEW D, 2005, 71 (12) : 1 - 7
  • [8] Quasinormal modes of a quantum-corrected Schwarzschild black hole: gravitational and Dirac perturbations
    Saleh, Mahamat
    Bouetou, Bouetou Thomas
    Kofane, Timoleon Crepin
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (04)
  • [9] Bardeen spacetime as a quantum corrected Schwarzschild black hole: Quasinormal modes and Hawking radiation
    Konoplya, R. A.
    Ovchinnikov, D.
    Ahmedov, B.
    [J]. PHYSICAL REVIEW D, 2023, 108 (10)
  • [10] Quasinormal modes of scalar perturbation around a quantum-corrected Schwarzschild black hole
    Mahamat Saleh
    Bouetou Bouetou Thomas
    Timoleon Crepin Kofane
    [J]. Astrophysics and Space Science, 2014, 350 : 721 - 726