A METRICAL APPROACH TO FINSLER GEOMETRY

被引:0
|
作者
Minguzzi, E. [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Via S Marta 3, I-50139 Florence, Italy
关键词
Finsler geometry; Einstein-Car tan gravity; nonlinear connection; CONNECTIONS; CHERN;
D O I
10.48550/arXiv.2107.09227
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the standard approach to Finsler geometry the metric is defined as a vertical Hessian and the Chern or Cartan connections appear as just two among many possible natural linear connections on the pullback tangent bundle. Here it is shown that the Hessian nature of the metric, the nonlinear connection and the Chern or Cartan connections can be derived from a few compatibility axioms between metric and Finsler connection. This result provides a metrical formulation of Finsler geometry which is well adapted to field theory, and which has proved useful in Einstein-Cartan-like approaches to Finsler gravity.
引用
收藏
页码:173 / 195
页数:23
相关论文
共 50 条
  • [1] METRICAL FINSLER STRUCTURES AND METRICAL FINSLER CONNECTIONS
    MIRON, R
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1983, 23 (02): : 219 - 224
  • [2] ON METRICAL FINSLER CONNECTIONS WITH TORSION OF GENERALIZED FINSLER-SPACES
    SINGH, SK
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (04): : 399 - 404
  • [3] Area and metrical connections in Finsler spaces
    Tamássy, L
    [J]. FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 263 - 280
  • [4] A Unified Approach to the Theory of Connections in Finsler Geometry
    Vitorio, Henrique
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 317 - 333
  • [5] A Unified Approach to the Theory of Connections in Finsler Geometry
    Henrique Vitório
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 317 - 333
  • [6] Point Finsler spaces with metrical linear connections
    Tamássy, L
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 643 - 655
  • [7] ON FINSLER GEOMETRY
    CHERN, SS
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (10): : 757 - 761
  • [8] Finsler geometry
    Shimada, H
    Sabau, VS
    [J]. FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 15 - 24
  • [9] On metrical homogeneous connections of a Finsler point space
    Kozma, L
    Baran, S
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 49 (1-2): : 59 - 68
  • [10] GEOMETRY OF SPACETIME AND FINSLER GEOMETRY
    Tavakol, Reza
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (8-9): : 1678 - 1685