Superresolution imaging with multiparameter quantum metrology in passive remote sensing

被引:1
|
作者
Kose, Emre [1 ]
Braun, Daniel [1 ]
机构
[1] Eberhard Karls Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
关键词
OPTIMIZATION; LIMITS; INTERFEROMETER; ALGORITHMS; COHERENCE; TUTORIAL; DISTANCE; LIGHT;
D O I
10.1103/PhysRevA.107.032607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study super-resolution imaging theoretically using a distant n-mode interferometer in the microwave regime for passive remote sensing, used, e.g., for satellites like the "Soil Moisture and Ocean Salinity" (SMOS) mission to observe the surface of the Earth. We give a complete quantum-mechanical analysis of multiparameter estimation of the temperatures on the source plane. We find the optimal detection modes by combining incoming modes with an optimized unitary that enables the most informative measurement based on photon counting in the detection modes and saturates the quantum Cramer-Rao bound from the symmetric logarithmic derivative for the parameter set of temperatures. In our numerical analysis, we achieved a quantum-enhanced super-resolution by reconstructing an image using the maximum likelihood estimator with a pixel size of 3 km, which is ten times smaller than the spatial resolution of SMOS with comparable parameters. Further, we find the optimized unitary for uniform temperature distribution on the source plane, with the temperatures corresponding to the average temperatures of the image. Even though the corresponding unitary was not optimized for the specific image, it still gives a super-resolution compared to local measurement scenarios for the theoretically possible maximum number of measurements.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multiparameter quantum metrology of incoherent point sources: Towards realistic superresolution
    Rehacek, J.
    Hradil, Z.
    Stoklasa, B.
    Paur, M.
    Grover, J.
    Krzic, A.
    Sanchez-Soto, L. L.
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)
  • [2] Optimal and Variational Multiparameter Quantum Metrology and Vector-Field Sensing
    Kaubruegger, Raphael
    Shankar, Athreya
    V. Vasilyev, Denis
    Zoller, Peter
    [J]. PRX QUANTUM, 2023, 4 (02):
  • [3] Compatibility in multiparameter quantum metrology
    Ragy, Sammy
    Jarzyna, Marcin
    Demkowicz-Dobrzanski, Rafal
    [J]. PHYSICAL REVIEW A, 2016, 94 (05)
  • [4] Multiparameter quantum critical metrology
    Di Fresco, Giovanni
    Spagnolo, Bernardo
    Valenti, Davide
    Carollo, Angelo
    [J]. SCIPOST PHYSICS, 2022, 13 (04):
  • [5] Multiparameter Gaussian quantum metrology
    Nichols, Rosanna
    Liuzzo-Scorpo, Pietro
    Knott, Paul A.
    Adesso, Gerardo
    [J]. PHYSICAL REVIEW A, 2018, 98 (01)
  • [6] A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging
    Albarelli, F.
    Barbieri, M.
    Genoni, M. G.
    Gianani, I
    [J]. PHYSICS LETTERS A, 2020, 384 (12)
  • [7] Quantum Optical Technologies for Metrology, Sensing, and Imaging
    Dowling, Jonathan P.
    Seshadreesan, Kaushik P.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (12) : 2359 - 2370
  • [8] Multiparameter quantum metrology with postselection measurements
    Ho, Le Bin
    Kondo, Yasushi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (01)
  • [9] Generalizable control for multiparameter quantum metrology
    Xu, Han
    Wang, Lingna
    Yuan, Haidong
    Wang, Xin
    [J]. PHYSICAL REVIEW A, 2021, 103 (04)
  • [10] Sensitivity Bounds for Multiparameter Quantum Metrology
    Gessner, Manuel
    Pezze, Luca
    Smerzi, Augusto
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (13)