A Fast Belief Propagation-Based Distributed Gauss-Newton Method for Power System State Estimation

被引:0
|
作者
Guo, Peng [1 ]
Shi, Danni [1 ]
Wang, Xuan [1 ]
Shi, Xinghua [2 ]
机构
[1] State Grid Smart Grid Res Inst Co Ltd, State Grid Lab Grid Adv Comp & Applicat, Beijing 102209, Peoples R China
[2] State Grid Smart Grid Res Inst Co Ltd, Zhejiang 310007, Peoples R China
关键词
Gauss-Newton state estimation; factor graphs; belief propagation; parallel computing;
D O I
10.1109/ICCCBDA56900.2023.10154733
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
State estimation is the foundation for a variety of online power system applications in energy management systems, and the stability of power systems is directly impacted by the speed with which current system states can be obtained through state estimation. This paper proposed a fast Gaussian-Newton state estimation method for power systems based on parallel belief propagation, which implements the Gaussian belief process via multi-core and multi-thread parallel computation to achieve efficient state estimation. Simulation findings on numerous IEEE-standard power systems show that the suggested technique outperforms the traditional algorithm.
引用
收藏
页码:233 / 238
页数:6
相关论文
共 50 条
  • [1] Distributed Gauss-Newton Method for State Estimation Using Belief Propagation
    Cosovic, Mirsad
    Vukobratovic, Dejan
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (01) : 648 - 658
  • [2] Distributed Gauss-Newton Method for AC State Estimation: A Belief Propagation Approach
    Cosovic, Mirsad
    Vukobratovic, Dejan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2016,
  • [3] A Distributed Gauss-Newton Method for Power System State Estimation
    Minot, Ariana
    Lu, Yue M.
    Li, Na
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) : 3804 - 3815
  • [4] A Distributed Gauss-Newton Method for Power System State Estimation
    Minot, Ariana
    Lu, Yue
    Li, Na
    [J]. 2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [5] A distributed Gauss-Newton method for distribution system state estimation
    Li, Keqiang
    Han, Xueshan
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 136
  • [6] Distributed State Estimation for AC Power Systems using Gauss-Newton ALADIN
    Du, Xu
    Engelmann, Alexander
    Jiang, Yuning
    Faulwasser, Timm
    Houska, Boris
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1919 - 1924
  • [7] Dishonest Gauss Newton Method Based Power System State Estimation on a GPU
    Rahman, Md. Ashfaqur
    Venayagamoorthy, Ganesh Kumar
    [J]. 2016 CLEMSON UNIVERSITY POWER SYSTEMS CONFERENCE (PSC), 2016,
  • [8] Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method
    Guohua Gao
    Hao Jiang
    Jeroen C. Vink
    Paul P. H. van Hagen
    Terence J. Wells
    [J]. Computational Geosciences, 2020, 24 : 837 - 852
  • [9] Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method
    Gao, Guohua
    Jiang, Hao
    Vink, Jeroen C.
    van Hagen, Paul P. H.
    Wells, Terence J.
    [J]. COMPUTATIONAL GEOSCIENCES, 2020, 24 (02) : 837 - 852
  • [10] Power system frequency estimation using supervised gauss-newton algorithm
    Xue, Spark Y.
    Yang, Simon X.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 1858 - 1863