Common bean (Phaseolus vulgaris L.) gas exchange capacity under nutrient deficiency

被引:1
|
作者
Javornik, Tomislav [1 ,3 ]
Poljak, Milan [2 ]
Carovic-stanko, Klaudija [1 ,3 ]
Lazarevic, Boris [2 ,3 ]
机构
[1] Univ Zagreb, Dept Seed Sci & Technol, Fac Agr, Svetosimunska cesta 25, Zagreb 10000, Croatia
[2] Univ Zagreb, Dept Plant Nutr, Fac Agr, Svetosimunska cesta 25, Zagreb 10000, Croatia
[3] Ctr Excellence Biodivers & Mol Plant Breeding CroP, Svetosimunska cesta 25, Zagreb 10000, Croatia
来源
关键词
transpiration; net photosynthetic rate; stomatal conductance; intercellular CO2 concentration; CARBOXYLASE-OXYGENASE; PHOTOSYNTHESIS; POTASSIUM; STRESS; LEAVES; SUCROSE; COTTON; SPECIFICITY; LIMITATIONS; PHOSPHORUS;
D O I
10.5513/JCEA01/24.1.3667
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The lack of plant nutrients is a major problem for agriculture. Because of their essential role in the most important metabolic processes of plants, their deficiency depresses photosynthesis and disrupts the efficient operation of the photosynthetic apparatus. In this study, we investigated the gas exchange of common beans bean under the N, P, K, Mg, and Fe deficiency. The experiment was set up as a hydroponic, fully aerated, floating system in 6 hydroponic tubs. Each hydroponic tub contained 10 plants and was filled with a modified Hoagland nutrient solution. One group of plants was grown in a complete nutrient solution (control), while the other treatments lacked one of the following nutrients: N, P, K, Mg and Fe. During the experiment, gas exchange parameters: net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs) and intercellular CO2 concentration (Ci) were measured. At the end of the experiment, the nutrient content of the plant tissue was determined. Nutrient deficiency significantly affected all measured photosynthetic parameters and visual symptoms indicated that a lack of different nutrients affected the photosynthetic machinery at different points. Potassium deficiency lower stomatal conductance and increased mesophyll resistance to CO2 diffusion and/or RubisCO activity. Nitrogen and Mg deficiency affected chlorophyll synthesis and accelerated leaf senescence. Phosphorus deficiency caused less damage to gas exchange parameters probably due to protective mechanisms of reduced leaf area. Seed Fe content was surplus to sustain photosynthetic machinery during the early developmental phase.
引用
收藏
页码:216 / 224
页数:9
相关论文
共 50 条
  • [1] GAS EXCHANGE CAPACITY OF CROATIAN COMMON BEAN LANDRACES (PHASEOLUS VULGARIS L.) IS RELATED TO THEIR ORIGIN AND GROWTH TYPE
    Lazarevic, Boris
    Karazija, Tomislav
    Petek, Marko
    Poljak, Milan
    Satovic, Zlatko
    Liber, Zlatko
    Carovic-Stanko, Klaudija
    JOURNAL OF ELEMENTOLOGY, 2018, 23 (03): : 1043 - 1056
  • [2] Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency
    Abdelmajid, Krouma
    Karim, Ben Hamed
    Chedly, Abdelly
    ACTA PHYSIOLOGIAE PLANTARUM, 2008, 30 (01) : 27 - 34
  • [3] Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency
    Krouma Abdelmajid
    Ben Hamed Karim
    Abdelly Chedly
    Acta Physiologiae Plantarum, 2008, 30 : 27 - 34
  • [4] The Paleobiolinguistics of the Common Bean (Phaseolus vulgaris L.)
    Brown, Cecil H.
    Clement, Charles R.
    Epps, Patience
    Luedeling, Eike
    Wichmann, Soren
    ETHNOBIOLOGY LETTERS, 2014, 5 : 104 - 115
  • [5] Cytogenetic map of common bean (Phaseolus vulgaris L.)
    Fonseca, Artur
    Ferreira, Joana
    Barros dos Santos, Tiago Ribeiro
    Mosiolek, Magdalena
    Bellucci, Elisa
    Kami, James
    Gepts, Paul
    Geffroy, Valerie
    Schweizer, Dieter
    dos Santos, Karla G. B.
    Pedrosa-Harand, Andrea
    CHROMOSOME RESEARCH, 2010, 18 (04) : 487 - 502
  • [6] Gene flow in common bean (Phaseolus vulgaris L.)
    Ferreira, Juliano Lino
    de Souza Carneiro, Jose Eustaquio
    Teixeira, Alexsandro Lara
    de Lanes, Fabieli Fortunata
    Cecon, Paulo Roberto
    Borem, Aluizio
    EUPHYTICA, 2007, 153 (1-2) : 165 - 170
  • [7] Gene flow in common bean (Phaseolus vulgaris L.)
    Juliano Lino Ferreira
    José Eustáquio de Souza Carneiro
    Alexsandro Lara Teixeira
    Fabiéli Fortunata de Lanes
    Paulo Roberto Cecon
    Aluízio Borém
    Euphytica, 2007, 153 : 165 - 170
  • [8] Cytogenetic map of common bean (Phaseolus vulgaris L.)
    Artur Fonsêca
    Joana Ferreira
    Tiago Ribeiro Barros dos Santos
    Magdalena Mosiolek
    Elisa Bellucci
    James Kami
    Paul Gepts
    Valérie Geffroy
    Dieter Schweizer
    Karla G. B. dos Santos
    Andrea Pedrosa-Harand
    Chromosome Research, 2010, 18 : 487 - 502
  • [9] The polyphenolic profiles of common bean (Phaseolus vulgaris L.)
    Lin, Long-Ze
    Harnly, James M.
    Pastor-Corrales, Marcial S.
    Luthria, Devanand L.
    FOOD CHEMISTRY, 2008, 107 (01) : 399 - 410
  • [10] Is it worth inoculating common bean (Phaseolus vulgaris L.)?
    Kellman, Anthony W.
    Hill, George D.
    McKenzie, Bruce A.
    AGRONOMY NEW ZEALAND, PROCEEDINGS, 2006, 36 : 24 - +