A necessary and sufficient condition of asymptotic stability for a class of Fornasini-Marchesini models

被引:0
|
作者
Bachelier, Olivier [1 ]
Cluzeau, Thomas [2 ]
Rigaud, Alexandre [1 ]
Silva Alvarez, Francisco Jose [2 ]
Yeganefar, Nima [1 ]
机构
[1] Univ Poitiers, LIAS ENSIP, Batiment B25,2 Pierre Brousse,TSA 41105, F-86073 Poitiers, France
[2] Univ Limoges, XLIM, UMR CNRS 7252, 123 Ave Albert Thomas, F-87060 Limoges, France
关键词
Linear systems; Multidimensional systems; 2D discrete systems; Fornasini-Marchesini models; Asymptotic stability; DISCRETE-SYSTEMS; STABILIZATION;
D O I
10.1016/j.laa.2022.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic stability of a particular class of linear2D discrete Fornasini-Marchesini models. The solutions of the model can be expressed in terms of doubly indexed sequences in a simple way only when the matrices describing the model commute. In this situation, we are able to analyse directly the limit of all the trajectories. By doing so, we propose the first necessary and sufficient condition for asymptotic stability of Fornasini-Marchesini matrix models. This condition is not computationally challenging as it is ultimately based on the eigenvalues of the matrices describing the model. We support our result with numerical simulations. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:206 / 232
页数:27
相关论文
共 50 条
  • [1] A Simple Necessary and Sufficient Condition of Asymptotic Stability for Scalar Fornasini-Marchesini Models
    Bachelier, Olivier
    David, Ronan
    Yeganefar, Nima
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 3772 - 3777
  • [2] NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR FRACTIONAL FORNASINI-MARCHESINI MODEL
    Yusubov, Shakir Sh
    Mahmudov, Elimhan N.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (10) : 7221 - 7244
  • [3] Study of Asymptotic Stability for 2D Fornasini-Marchesini linear models
    Rigaud, Alexandre
    Bachelier, Olivier
    Yeganefar, Nima
    2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 580 - 585
  • [4] LMI stability tests for the Fornasini-Marchesini model
    Dumitrescu, Bogdan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (08) : 4091 - 4095
  • [5] On Kalman filtering for 2-D Fornasini-Marchesini models
    Yang, Ran
    Ntogramatzidis, Lorenzo
    Cantoni, Michael
    NDS: 2009 INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS, 2009, : 95 - +
  • [6] Equivalence of n-dimensional Roesser and Fornasini-Marchesini models
    Miri, SA
    Aplevich, JD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) : 401 - 405
  • [7] Stability of asynchronous two-dimensional Fornasini-Marchesini dynamical systems
    Bhaya, A
    Kaszkurewicz, E
    Su, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 332 : 257 - 263
  • [8] Stability of the 2-D Fornasini-Marchesini model with periodic coefficients
    Bose, T
    Thamvichai, R
    Radenkovic, M
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1925 - 1928
  • [9] Perfect observers for singular 2-D Fornasini-Marchesini models
    Kaczorek, T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (10) : 1671 - 1675
  • [10] On stability robustness of 2-D systems described by the Fornasini-Marchesini model
    Ooba, T
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2001, 12 (01) : 81 - 88