Generalizable Deep Learning-Based Sleep Staging Approach for Ambulatory Textile Electrode Headband Recordings

被引:6
|
作者
Rusanen, Matias [1 ,2 ]
Huttunen, Riku [1 ,2 ]
Korkalainen, Henri [1 ,2 ]
Myllymaa, Sami [1 ,2 ]
Toeyraes, Juha [1 ,3 ,4 ]
Myllymaa, Katja [1 ,2 ]
Sigurdardottir, Sigridur [5 ]
Olafsdottir, Kristin A. [5 ]
Leppaenen, Timo [1 ,2 ,4 ]
Arnardottir, Erna S. [5 ,6 ]
Kainulainen, Samu [1 ,2 ]
机构
[1] Univ Eastern Finland, Dept Tech Phys, FI-70211 Kuopio, Finland
[2] Kuopio Univ Hosp, Diagnost Imaging Ctr, FI-70211 Kuopio, Finland
[3] Kuopio Univ Hosp, Sci Serv Ctr, FI-70211 Kuopio, Finland
[4] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, QLD 4067, Australia
[5] Reykjavik Univ, Sch Technol, Sleep Inst, IS-102 Reykjavik, Iceland
[6] Landspitali Natl Univ Hosp Iceland, IS-101 Reykjavik, Iceland
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
Sleep; Electrodes; Recording; Electroencephalography; Textiles; Electrooculography; Standards; Deep learning; electrooculography; sleep; textile electrodes; wearables; convolutional neural network; POLYSOMNOGRAPHY; DIAGNOSIS; CENTERS; APNEA;
D O I
10.1109/JBHI.2023.3240437
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reliable, automated, and user-friendly solutions for the identification of sleep stages in home environment are needed in various clinical and scientific research settings. Previously we have shown that signals recorded with an easily applicable textile electrode headband (FocusBand Technologies, T 2 Green Pty Ltd) contain characteristics similar to the standard electrooculography (EOG, E1-M2). We hypothesize that the electroencephalographic (EEG) signals recorded using the textile electrode headband are similar enough with standard EOG in order to develop an automatic neural network-based sleep staging method that generalizes from diagnostic polysomnographic (PSG) data to ambulatory sleep recordings of textile electrode-based forehead EEG. Standard EOG signals together with manually annotated sleep stages from clinical PSG dataset (n = 876) were used to train, validate, and test a fully convolutional neural network (CNN). Furthermore, ambulatory sleep recordings including a standard set of gel-based electrodes and the textile electrode headband were conducted for 10 healthy volunteers at their homes to test the generalizability of the model. In the test set (n = 88) of the clinical dataset, the model's accuracy for 5-stage sleep stage classification was 80% (? = 0.73) using only the single-channel EOG. The model generalized well for the headband-data, reaching 82% (? = 0.75) overall sleep staging accuracy. In comparison, accuracy of the model was 87% (? = 0.82) in home recordings using the standard EOG. In conclusion, the CNN model shows potential on automatic sleep staging of healthy individuals using a reusable electrode headband in a home environment.
引用
收藏
页码:1869 / 1880
页数:12
相关论文
共 50 条
  • [1] DEEP LEARNING ENABLES AUTOMATIC SLEEP STAGING FROM TEXTILE ELECTRODE-BASED HOME SLEEP RECORDINGS
    Rusanen, M.
    Huttunen, R.
    Korkalainen, H.
    Toyras, J.
    Myllymaa, S.
    Leppanen, T.
    Sigurdardottir, S.
    Arnardottir, E. S.
    Kainulainen, S.
    SLEEP MEDICINE, 2022, 100 : S294 - S294
  • [2] A Deep Learning Strategy for Automatic Sleep Staging Based on Two-Channel EEG Headband Data
    Casciola, Amelia A.
    Carlucci, Sebastiano K.
    Kent, Brianne A.
    Punch, Amanda M.
    Muszynski, Michael A.
    Zhou, Daniel
    Kazemi, Alireza
    Mirian, Maryam S.
    Valerio, Jason
    McKeown, Martin J.
    Nygaard, Haakon B.
    SENSORS, 2021, 21 (10)
  • [3] Differences in electroencephalogram signal combination performances in deep learning-based sleep staging
    Tashakori, Masoumeh
    Rusanen, Matias
    Karhu, Tuomas
    Huttunen, Riku
    Leppanen, Timo
    Nikkonen, Sami
    JOURNAL OF SLEEP RESEARCH, 2024, 33
  • [4] Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea
    Korkalainen, Henri
    Aakko, Juhani
    Nikkonen, Sami
    Kainulainen, Samu
    Leino, Akseli
    Duce, Brett
    Afara, Isaac O.
    Myllymaa, Sami
    Toyras, Juha
    Leppanen, Timo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) : 2073 - 2081
  • [5] Deep Learning Enables Accurate Automatic Sleep Staging Based on Ambulatory Forehead EEG
    Leino, Akseli
    Korkalainen, Henri
    Kalevo, Laura
    Nikkonen, Sami
    Kainulainen, Samu
    Ryan, Alexander
    Duce, Brett
    Sipila, Kirsi
    Ahlberg, Jari
    Sahlman, Johanna
    Miettinen, Tomi
    Westeren-Punnonen, Susanna
    Mervaala, Esa
    Toyras, Juha
    Myllymaa, Sami
    Leppanen, Timo
    Myllymaa, Katja
    IEEE ACCESS, 2022, 10 : 26554 - 26566
  • [6] DEEP LEARNING ENABLES ACCURATE AUTOMATIC SLEEP STAGING BASED ON AMBULATORY FOREHEAD EEG
    Leino, A.
    Korkalainen, H.
    Kalevo, L.
    Nikkonen, S.
    Kainulainen, S.
    Ryan, A.
    Duce, B.
    Sipila, K.
    Ahlberg, J.
    Sahlman, J.
    Miettinen, T.
    Westeren-Punnonen, S.
    Mervaala, E.
    Toyras, J.
    Myllymaa, S.
    Leppanen, T.
    Myllymaa, K.
    SLEEP MEDICINE, 2022, 100 : S293 - S294
  • [7] Evaluating the influence of temporal context on deep learning-based mouse sleep staging through the application of human sleep staging models
    Ciudad, Javier Garcia
    Morup, Morten
    Kornum, Birgitte Rahbek
    Zahid, Alexander Neergaard
    JOURNAL OF SLEEP RESEARCH, 2024, 33
  • [8] A Comparison of Signal Combinations for Deep Learning-Based Simultaneous Sleep Staging and Respiratory Event Detection
    Huttunen, Riku
    Leppanen, Timo
    Duce, Brett
    Arnardottir, Erna S.
    Nikkonen, Sami
    Myllymaa, Sami
    Toyras, Juha
    Korkalainen, Henri
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (05) : 1704 - 1714
  • [9] Research and application of deep learning-based sleep staging: Data, modeling, validation, and clinical practice
    Yue, Huijun
    Chen, Zhuqi
    Guo, Wenbin
    Sun, Lin
    Dai, Yidan
    Wang, Yiming
    Ma, Wenjun
    Fan, Xiaomao
    Wen, Weiping
    Lei, Wenbin
    SLEEP MEDICINE REVIEWS, 2024, 74
  • [10] A deep learning-based model for screening and staging pneumoconiosis
    Zhang, Liuzhuo
    Rong, Ruichen
    Li, Qiwei
    Yang, Donghan M.
    Yao, Bo
    Luo, Danni
    Zhang, Xiong
    Zhu, Xianfeng
    Luo, Jun
    Liu, Yongquan
    Yang, Xinyue
    Ji, Xiang
    Liu, Zhidong
    Xie, Yang
    Sha, Yan
    Li, Zhimin
    Xiao, Guanghua
    SCIENTIFIC REPORTS, 2021, 11 (01)