Workflow for fatigue life prediction of additive manufactured complex designs from powder bed fusion of Ti-6Al-4V

被引:2
|
作者
Kishore, Prateek [1 ,2 ]
Singh, Tanul [1 ]
Aher, Ravi [1 ]
Alankar, Alankar [2 ]
机构
[1] Eaton India Innovat Ctr, B6 Magarpatta SEZ, Pune 411013, Maharashtra, India
[2] Indian Inst Technol, Dept Mech Engn, Mumbai 400076, Maharashtra, India
关键词
Additive manufacturing; Surface roughness quantification; Probabilistic fatigue life; Extreme value statistics; Complex shapes; SURFACE-ROUGHNESS; CRACK-GROWTH; STRENGTH; DEFECTS; ALLOYS; BEHAVIOR; AM;
D O I
10.1016/j.ijfatigue.2023.107941
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Accurate fatigue life predictions of metal additive manufactured components are critical for design optimization and to leverage the advantages provided by additive manufacturing technology. As compared to conventional manufacturing processes, additive manufactured components have poor surface roughness and more internal porosities. Hot isostatic pressing has been shown to reduce porosities significantly whereas, surface improve-ment is not possible due to inaccessibility to the interior surfaces of complex shaped components. In the past, the fatigue prediction in presence of such surface defects has been explored using qualitative method such as ranking and quantitative method such as endurance limit prediction. A few fracture-based crack growth methods have been shown to validate with test for uniaxial coupon tests. The application of such methods for a complex shaped component with continuous variation of stress and roughness has not been explored. In this article, fatigue life prediction of thin-walled tubes manufactured using powder bed fusion of Ti-6Al-4V is documented. The Hartman-Schijve and Generalized Paris law equations are used with statistical variations of stress and surface roughness to predict the most probable life. The study shows a good correlation with physical test data. A detailed workflow for the process of fatigue life prediction is created.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fatigue of laser powder-bed fusion additive manufactured Ti-6Al-4V in presence of process-induced porosity defects
    Akgun, Emre
    Zhang, Xiang
    Lowe, Tristan
    Zhang, Yanhui
    Dore, Matthew
    ENGINEERING FRACTURE MECHANICS, 2022, 259
  • [2] Dynamic a globularization in laser powder bed fusion additively manufactured Ti-6Al-4V
    Chen, J.
    Fabijanic, D.
    Brandt, M.
    Zhao, Y.
    Ren, S. B.
    Xu, W.
    ACTA MATERIALIA, 2023, 255
  • [3] A modelling framework for fatigue-life prediction of selective laser melting additive manufactured Ti-6Al-4V
    Psihoyos, Harry O.
    Lampeas, George N.
    Pantelakis, Spiros G.
    SECOND EUROPEAN CONFERENCE ON THE STRUCTURAL INTEGRITY OF ADDITIVELY MANUFACTURED MATERIALS, 2021, 34 : 253 - 258
  • [4] Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion
    Obeidi, Muhannad Ahmed
    Mussatto, Andre
    Dogu, Merve Nur
    Sreenilayam, Sithara P.
    McCarthy, Eanna
    Ul Ahad, Inam
    Keaveney, Shane
    Brabazon, Dermot
    SURFACE & COATINGS TECHNOLOGY, 2022, 434
  • [5] On the role of building orientation and surface post-processes on the fatigue life of Ti-6Al-4V coupons manufactured by laser powder bed fusion
    Cutolo, Antonio
    Elangeswaran, Chola
    Muralidharan, Gokula Krishna
    Van Hooreweder, Brecht
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [6] Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation
    Hasib, M. Tarik
    Ostergaard, Halsey E.
    Li, Xiaopeng
    Kruzic, Jamie J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 142
  • [7] Ti-6Al-4V powder characteristics in laser powder bed fusion: The effect on tensile and fatigue behavior
    Soltani-Tehrani, Arash
    Habibnejad-Korayem, Mahdi
    Shao, Shuai
    Haghshenas, Meysam
    Shamsaei, Nima
    ADDITIVE MANUFACTURING, 2022, 51
  • [8] Fatigue performance of laser powder bed fusion hydride-dehydride Ti-6Al-4V powder
    Asherloo, Mohammadreza
    Wu, Ziheng
    Heim, Mike
    Nelson, Dave
    Paliwal, Muktesh
    Rollett, Anthony D.
    Mostafaei, Amir
    ADDITIVE MANUFACTURING, 2022, 59
  • [9] Life prediction of fretting fatigue of Ti-6Al-4V
    Jin, Ohchang
    Calcaterra, Jeffrey Ronald
    Mall, Shankar
    FATIGUE & FRACTURE MECHANICS, 35TH VOLUME, 2007, 35 : 174 - +
  • [10] Fatigue Failure from Inner Surfaces of Additive Manufactured Ti-6Al-4V Components
    de Jesus, Joel
    Martins Ferreira, Jose Antonio
    Borrego, Luis
    Costa, Jose D.
    Capela, Carlos
    MATERIALS, 2021, 14 (04) : 1 - 12