Clinical applications of deep learning in breast MRI

被引:23
|
作者
Zhao, Xue [1 ,2 ,3 ,4 ,5 ,6 ]
Bai, Jing-Wen [1 ,5 ,6 ,7 ,9 ]
Guo, Qiu [8 ]
Ren, Ke [8 ]
Zhang, Guo-Jun [1 ,3 ,4 ,5 ,6 ,9 ]
机构
[1] Xiamen Univ, Xiangan Hosp, Sch Med, Fujian Key Lab Precis Diag & Treatment Breast Canc, Xiamen, Peoples R China
[2] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen, Peoples R China
[3] Xiamen Univ, Dept Breast Thyroid Surg, Xiamen, Peoples R China
[4] Xiamen Univ, Xiangan Hosp, Canc Ctr, Sch Med, Xiamen, Peoples R China
[5] Xiamen Univ, Xiangan Hosp, Xiamen Res Ctr Clin Med Breast & Thyroid Canc, Sch Med, Xiamen, Peoples R China
[6] Xiamen Univ, Xiangan Hosp, Sch Med, Xiamen Key Lab Endocrine Related Canc Precis Med, Xiamen, Peoples R China
[7] Xiamen Univ, Xiangan Hosp, Sch Med, Dept Oncol, Xiamen, Peoples R China
[8] Xiamen Univ, Xiangan Hosp, Sch Med, Dept Radiol, Xiamen, Peoples R China
[9] Xiamen Univ, Canc Res Ctr, Sch Med, Xiamen, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Breast cancer; Magnetic resonance imaging; Artificial intelligence; Deep learning; LYMPH-NODE METASTASIS; BACKGROUND PARENCHYMAL ENHANCEMENT; CONVOLUTIONAL NEURAL-NETWORK; FIBROGLANDULAR TISSUE; CANCER DIAGNOSIS; SEGMENTATION; IMAGES;
D O I
10.1016/j.bbcan.2023.188864
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deep learning (DL) is one of the most powerful data-driven machine-learning techniques in artificial intelligence (AI). It can automatically learn from raw data without manual feature selection. DL models have led to remarkable advances in data extraction and analysis for medical imaging. Magnetic resonance imaging (MRI) has proven useful in delineating the characteristics and extent of breast lesions and tumors. This review summarizes the current state-of-the-art applications of DL models in breast MRI. Many recent DL models were examined in this field, along with several advanced learning approaches and methods for data normalization and breast and lesion segmentation. For clinical applications, DL-based breast MRI models were proven useful in five aspects: diagnosis of breast cancer, classification of molecular types, classification of histopathological types, prediction of neoadjuvant chemotherapy response, and prediction of lymph node metastasis. For subsequent studies, further improvement in data acquisition and preprocessing is necessary, additional DL techniques in breast MRI should be investigated, and wider clinical applications need to be explored.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The Evolution and Clinical Impact of Deep Learning Technologies in Breast MRI
    Fujioka, Tomoyuki
    Fujita, Shohei
    Ueda, Daiju
    Ito, Rintaro
    Kawamura, Mariko
    Fushimi, Yasutaka
    Tsuboyama, Takahiro
    Yanagawa, Masahiro
    Yamada, Akira
    Tatsugami, Fuminari
    Kamagata, Koji
    Nozaki, Taiki
    Matsui, Yusuke
    Fujima, Noriyuki
    Hirata, Kenji
    Nakaura, Takeshi
    Tateishi, Ukihide
    Naganawa, Shinji
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2024,
  • [2] Diffeomorphic Multi-resolution Deep Learning Registration for Applications in Breast MRI
    French, M. G.
    Talou, G. D. Maso
    Gamage, T. P. Babarenda
    Nash, M. P.
    Nielsen, P. M. F.
    Doyle, A. J.
    Iglesias, J. E.
    Balbastre, Y.
    Young, S., I
    COMPUTATIONAL BIOMECHANICS FOR MEDICINE, MICCAI 2023, 2023, : 3 - 16
  • [3] Applications of Deep Learning to MRI Images:A Survey
    Jin Liu
    Yi Pan
    Min Li
    Ziyue Chen
    Lu Tang
    Chengqian Lu
    Jianxin Wang
    Big Data Mining and Analytics, 2018, 1 (01) : 1 - 18
  • [4] Applications of Deep Learning to MRI Images: A Survey
    Liu, Jin
    Pan, Yi
    Li, Min
    Chen, Ziyue
    Tang, Lu
    Lu, Chengqian
    Wang, Jianxin
    BIG DATA MINING AND ANALYTICS, 2018, 1 (01): : 1 - 18
  • [5] Clinical Impact of Deep Learning Reconstruction in MRI
    Kiryu, Shigeru
    Akai, Hiroyuki
    Yasaka, Koichiro
    Tajima, Taku
    Kunimatsu, Akira
    Yoshioka, Naoki
    Akahane, Masaaki
    Abe, Osamu
    Ohtomo, Kuni
    RADIOGRAPHICS, 2023, 43 (06)
  • [6] Tumor Segmentation in Breast MRI Using Deep Learning
    Matic, Zeljka
    Kadry, Seifedine
    2022 FIFTH INTERNATIONAL CONFERENCE OF WOMEN IN DATA SCIENCE AT PRINCE SULTAN UNIVERSITY (WIDS-PSU 2022), 2022, : 49 - 51
  • [7] Improving breast cancer diagnostics with deep learning for MRI
    Witowski, Jan
    Heacock, Laura
    Reig, Beatriu
    Kang, Stella K.
    Lewin, Alana
    Pysarenko, Kristine
    Patel, Shalin
    Samreen, Naziya
    Rudnicki, Wojciech
    Luczynska, Elzbieta
    Popiela, Tadeusz
    Moy, Linda
    Geras, Krzysztof J.
    SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (664)
  • [8] Interpretable deep learning regression for breast density estimation on MRI
    van der Velden, Bas H. M.
    Ragusi, Max A. A.
    Janse, Markus H. A.
    Loo, Claudette E.
    Gilhuijs, Kenneth G. A.
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [9] Breast MRI Segmentation by Deep Learning: Key Gaps and Challenges
    Askaripour, Khadijeh
    Zak, Arkadiusz
    IEEE ACCESS, 2023, 11 : 117935 - 117946
  • [10] Detection and characterization of MRI breast lesions using deep learning
    Herent, P.
    Schmauch, B.
    Jehanno, P.
    Dehaene, O.
    Saillard, C.
    Balleyguier, C.
    Arfi-Rouche, J.
    Jegou, S.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (04) : 219 - 225