A bifurcation problem for a one-dimensional p-Laplace elliptic problem with non-odd absorption

被引:0
|
作者
Luna, T. L. M. [1 ]
Carvalho, A. N. [1 ]
机构
[1] Univ Sao Paulo Campus Sao Carlos, Inst Ciencias Matemat & Computacao, Caixa Postal 668, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
p-Laplace operator; Elliptic problem; Nonlinear eigenvalue;
D O I
10.1016/j.jde.2023.07.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the existence of solutions of a one-dimensional eigenvalue problem -(|& phi;x|p-2 & phi;x)x = & lambda; |& phi;|q-2 & phi; - f (& phi;) such that & phi;(0) = & phi;(1) = 0, where p, q > 1, & lambda; is a positive real parameter and f is a continuous (not necessarily odd) function. Our goal is to give a complete description of solutions of this problem. We completely characterize the set of solutions of this problem, which may be uncountable. For 1 < p = 2, the existing results treat only the case when f is either odd and a power (see [11]) or when p = q ([8]). Our method of proof relies on a careful analysis of the phase diagram associated with this equation, refining the regularity results of M. Otani in 1984 (see [10]) and characterizing the exact points where we may have C2 regularity of solutions including some points & chi; & ISIN; (0, 1) for which & phi;x (& chi; ) = 0. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:446 / 475
页数:30
相关论文
共 50 条
  • [1] Sliding method and one-dimensional symmetry for p-Laplace equations
    Le, Phuong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (04)
  • [2] MLPG approximation to the p-Laplace problem
    Davoud Mirzaei
    Mehdi Dehghan
    Computational Mechanics, 2010, 46 : 805 - 812
  • [3] On the Zaremba Problem for the p-Laplace Operator
    Shestakov, I.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS V, 2013, 591 : 259 - 271
  • [4] ON AN ADAPTIVE LDG FOR THE P-LAPLACE PROBLEM
    Liu, Dongjie
    Zhou, Le
    Zhang, Xiaoping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (2-3) : 315 - 328
  • [5] MLPG approximation to the p-Laplace problem
    Mirzaei, Davoud
    Dehghan, Mehdi
    COMPUTATIONAL MECHANICS, 2010, 46 (06) : 805 - 812
  • [6] Nonconforming FEMs for the p-Laplace Problem
    Liu, D. J.
    Li, A. Q.
    Chen, Z. R.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (06) : 1365 - 1383
  • [7] The One-Dimensional Riemann Problem on an Elliptic Curve
    Matveeva, A. A.
    Poberezhnyi, V. A.
    MATHEMATICAL NOTES, 2017, 101 (1-2) : 115 - 122
  • [8] The one-dimensional Riemann problem on an elliptic curve
    A. A. Matveeva
    V. A. Poberezhnyi
    Mathematical Notes, 2017, 101 : 115 - 122
  • [9] ON THE DEAD-CORE PROBLEM FOR THE p-LAPLACE EQUATION WITH A STRONG ABSORPTION
    Guo, Jong-Shenq
    Wu, Chin-Chin
    TOHOKU MATHEMATICAL JOURNAL, 2015, 67 (04) : 541 - 551
  • [10] Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace operator
    Bonder, JF
    Pinasco, JP
    ARKIV FOR MATEMATIK, 2003, 41 (02): : 267 - 280