Reinforcement learning and approximate Bayesian computation (RL-ABC) for model selection and parameter calibration of time-varying systems

被引:1
|
作者
Ritto, T. G. [1 ,2 ]
Beregi, S. [2 ,3 ]
Barton, D. A. W. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Mech Engn, Rio De Janeiro, Brazil
[2] Univ Bristol, Fac Engn, Bristol, England
[3] Imperial Coll London, Dept Infect Dis Epimdemiol, London, England
基金
英国工程与自然科学研究理事会;
关键词
Nonlinear dynamics identification; Model selection; Slowly-varying systems Active learning; Reinforcement learning; ABC;
D O I
10.1016/j.ymssp.2023.110458
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper extends the recently developed methodology for model selection and parameter identification called RL-ABC (Ritto et al., 2022) (reinforced learning and approximate Bayesian computation) to time-varying systems. To tackle slowly-varying systems and detect abrupt changes, new features are proposed. (1) The probability of sampling the worst model has now a lower bound; because it cannot disappear, once it might be useful in the future as the system evolves. (2) A memory term (sliding window) is introduced such that past data can be forgotten whilst updating the reward; which might be useful depending on how fast the system changes. (3) The algorithm detects a change in the system by monitoring the models' acceptance; a significant drop in acceptance indicates a change. If the system changes the algorithm is reset: new parameter ranges are computed and the rewards are restarted. To test the proposed strategy, new experimental data is obtained from a test rig with non-linear restoring force characteristics. The amplitude of the dynamical experiment is obtained with the control -based continuation strategy varying the excitation amplitude, and three Duffing-like models are used to represent the system. The results are consistent, and the strategy is able to detect changes and update parameter estimation and model predictions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Reinforcement learning and approximate Bayesian computation for model selection and parameter calibration applied to a nonlinear
    Ritto, T. G.
    Beregi, S.
    Barton, D. A. W.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 181
  • [2] Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
    Toni, Tina
    Welch, David
    Strelkowa, Natalja
    Ipsen, Andreas
    Stumpf, Michael P. H.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2009, 6 (31) : 187 - 202
  • [3] Model selection and parameter estimation in tumor growth models using approximate Bayesian computation-ABC
    José Mir Justino da Costa
    Helcio Rangel Barreto Orlande
    Wellington Betencurte da Silva
    Computational and Applied Mathematics, 2018, 37 : 2795 - 2815
  • [4] Model selection and parameter estimation in tumor growth models using approximate Bayesian computation-ABC
    Justino da Costa, Jose Mir
    Barreto Orlande, Helcio Rangel
    da Silva, Wellington Betencurte
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2795 - 2815
  • [5] Model selection and parameter estimation of dynamical systems using a novel variant of approximate Bayesian computation
    Ben Abdessalem, A.
    Dervilis, N.
    Wagg, D.
    Worden, K.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 122 : 364 - 386
  • [6] Model selection and parameter estimation in structural dynamics using approximate Bayesian computation
    Ben Abdessalem, Anis
    Dervilis, Nikolaos
    Wagg, David
    Worden, Keith
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 99 : 306 - 325
  • [7] Approximate Bayesian Computation by Subset Simulation for model selection in dynamical systems
    Vakilzadeh, Majid K.
    Beck, James L.
    Abrahamsson, Thomas
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 1056 - 1061
  • [8] A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation
    Juliane Liepe
    Paul Kirk
    Sarah Filippi
    Tina Toni
    Chris P Barnes
    Michael P H Stumpf
    Nature Protocols, 2014, 9 : 439 - 456
  • [9] A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation
    Liepe, Juliane
    Kirk, Paul
    Filippi, Sarah
    Toni, Tina
    Barnes, Chris P.
    Stumpf, Michael P. H.
    NATURE PROTOCOLS, 2014, 9 (02) : 439 - 456
  • [10] Bayesian model comparison for time-varying parameter VARs with stochastic volatility
    Chan, Joshua C. C.
    Eisenstat, Eric
    JOURNAL OF APPLIED ECONOMETRICS, 2018, 33 (04) : 509 - 532