Stability of Pullback Random Attractors for Stochastic 3D Navier-Stokes-Voight Equations with Delays

被引:2
|
作者
Zhang, Qiangheng [1 ]
机构
[1] Heze Univ, Sch Math & Stat, Heze 274015, Peoples R China
关键词
Stochastic delay NSV equation; Pullback random attractor; Stability; Upper semicontinuity; Spectrum decomposition; UPPER SEMI-CONTINUITY; BACKWARD COMPACT; DYNAMICS;
D O I
10.1007/s10440-023-00560-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the limiting dynamics of stochastic retarded 3D non-autonomous Navier-Stokes-Voight (NSV) equations driven by Laplace-multiplier noise. We first prove the existence, uniqueness, forward compactness and forward longtime stability of pullback random attractors (PRAs). We then establish the upper semicontinuity of PRAs from non-autonomy to autonomy. Finally, we study the upper semicontinuity of PRAs under an analogue of Hausdorff semi-distance as the memory time tends to zero. Because of the solution has no higher regularity, the forward pullback asymptotic compactness of solutions in the state space is proved by the spectrum decomposition technique.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Stability of Pullback Random Attractors for Stochastic 3D Navier-Stokes-Voight Equations with Delays
    Qiangheng Zhang
    [J]. Acta Applicandae Mathematicae, 2023, 184
  • [2] Pullback Attractors for a 3D Non-autonomous Navier-Stokes-Voight Equations
    Qin, Yu-ming
    Yang, Xin-guang
    Liu, Xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (04): : 737 - 752
  • [3] Pullback Attractors for a 3D Non-autonomous Navier-Stokes-Voight Equations
    Yu-ming QIN
    Xin-guang YANG
    Xin LIU
    [J]. Acta Mathematicae Applicatae Sinica, 2019, 35 (04) : 737 - 752
  • [4] Pullback Attractors for a 3D Non-autonomous Navier-Stokes-Voight Equations
    Yu-ming Qin
    Xin-guang Yang
    Xin Liu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 737 - 752
  • [5] Random dynamics of the 3D stochastic Navier-Stokes-Voight equations
    Gao, Hongjun
    Sun, Chengfeng
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1197 - 1205
  • [6] ATTRACTORS FOR AUTONOMOUS AND NONAUTONOMOUS 3D NAVIER-STOKES-VOIGHT EQUATIONS
    Yue, Gaocheng
    Zhong, Chengkui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 985 - 1002
  • [7] Pullback attractors of 2D incompressible Navier-Stokes-Voight equations with delay
    Cao, J.
    Qin, Y.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 6670 - 6683
  • [8] Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations
    Varga KKALANTAROV
    Edriss STITI
    [J]. Chinese Annals of Mathematics., 2009, 30 (06) - 714
  • [9] Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations
    Kalantarov, Varga K.
    Titi, Edriss S.
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (06) : 697 - 714
  • [10] Global attractors and determining modes for the 3D Navier-Stokes-Voight equations
    Varga K. Kalantarov
    Edriss S. Titi
    [J]. Chinese Annals of Mathematics, Series B, 2009, 30 : 697 - 714