Advancing fluid dynamics simulations: A comprehensive approach to optimizing physics-informed neural networks

被引:3
|
作者
Zhou, Wen [1 ]
Miwa, Shuichiro [1 ]
Okamoto, Koji [1 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Nucl Engn & Management, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138654, Japan
基金
日本学术振兴会;
关键词
Computational efficiency - Computational fluid dynamics - Evolutionary algorithms - Optimization;
D O I
10.1063/5.0180770
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Flow modeling based on physics-informed neural networks (PINNs) is emerging as a potential artificial intelligence (AI) technique for solving fluid dynamics problems. However, conventional PINNs encounter inherent limitations when simulating incompressible fluids, such as difficulties in selecting the sampling points, balancing the loss items, and optimizing the hyperparameters. These limitations often lead to non-convergence of PINNs. To overcome these issues, an improved and generic PINN for fluid dynamic analysis is proposed. This approach incorporates three key improvements: residual-based adaptive sampling, which automatically samples points in areas with larger residuals; adaptive loss weights, which balance the loss terms effectively; and utilization of the differential evolution optimization algorithm. Then, three case studies at low Reynolds number, Kovasznay flow, vortex shedding past a cylinder, and Beltrami flow are employed to validate the improved PINNs. The contribution of each improvement to the final simulation results is investigated and quantified. The simulation results demonstrate good agreement with both analytical solutions and benchmarked computational fluid dynamics (CFD) calculation results, showcasing the efficiency and validity of the improved PINNs. These PINNs have the potential to reduce the reliance on CFD simulations for solving fluid dynamics problems.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics
    Zhao, Chi
    Zhang, Feifei
    Lou, Wenqiang
    Wang, Xi
    Yang, Jianyong
    Physics of Fluids, 2024, 36 (10)
  • [2] Physics-Informed Neural Networks for Cantilever Dynamics and Fluid-Induced Excitation
    Lee, Jeongsu
    Park, Keunhwan
    Jung, Wonjong
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [3] Physics-informed neural networks for learning fluid flows with symmetry
    Kim, Younghyeon
    Kwak, Hyungyeol
    Nam, Jaewook
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (09) : 2119 - 2127
  • [4] Physics-informed neural networks (PINNs) for fluid mechanics: a review
    Shengze Cai
    Zhiping Mao
    Zhicheng Wang
    Minglang Yin
    George Em Karniadakis
    Acta Mechanica Sinica, 2021, 37 : 1727 - 1738
  • [5] Physics-informed neural networks for learning fluid flows with symmetry
    Younghyeon Kim
    Hyungyeol Kwak
    Jaewook Nam
    Korean Journal of Chemical Engineering, 2023, 40 : 2119 - 2127
  • [6] Physics-informed neural networks (PINNs) for fluid mechanics: a review
    Cai, Shengze
    Mao, Zhiping
    Wang, Zhicheng
    Yin, Minglang
    Karniadakis, George Em
    ACTA MECHANICA SINICA, 2021, 37 (12) : 1727 - 1738
  • [7] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [8] Physics-Informed Neural Networks for Studying Charge Dynamics in Air
    Hjortstam, O.
    Konradsson, A.
    Serdyuk, Y. V.
    Hager, C.
    2023 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, CEIDP, 2023,
  • [9] Physics-Informed Neural Networks for Inverse Problems in Structural Dynamics
    Teloli, Rafael de O.
    Bigot, Mael
    Coelho, Lucas
    Ramasso, Emmanuel
    Tittarelli, Roberta
    Le Moal, Patrice
    Ouisse, Morvan
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVIII, 2024, 12950
  • [10] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,