Explainable machine learning model to diagnose giant cell arteritis based on texture features in aortic [18F]FDG-PET images

被引:0
|
作者
Vries, H. [1 ,2 ]
van Praagh, G. [1 ]
Nienhuis, P. [1 ]
Alic, L. [2 ]
Slart, R. [1 ,2 ]
机构
[1] Univ Med Ctr Groningen, Groningen, Netherlands
[2] Univ Twente, Enschede, Netherlands
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OP-088
引用
收藏
页码:S42 / S42
页数:1
相关论文
共 50 条
  • [1] Differentiating between giant cell arteritis and atherosclerosis on [18]FDG-PET: an explainable machine learning approach
    Vries, H. S.
    van Praagh, G. D.
    Nienhuis, P. H.
    Bouhali, O.
    Slart, R. H. J. A.
    Alic, L.
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 870 - 875
  • [2] Performance of Deauville Criteria in [18F]FDG-PET/CT Diagnostics of Giant Cell Arteritis
    Siefert, Jeffrey
    Kaufmann, Jonas
    Thiele, Felix
    Walter-Rittel, Thula
    Rogasch, Julian
    Biesen, Robert
    Burmester, Gerd R.
    Amthauer, Holger
    Schneider, Udo
    Furth, Christian
    DIAGNOSTICS, 2023, 13 (01)
  • [3] [18F]FDG-PET/CT as a Prognostic Inflammatory Imaging Marker in Giant Cell Arteritis
    Nienhuis, P.
    Van Sleen, Y.
    Brouwer, E.
    Slart, R. H. J. A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S234 - S234
  • [4] [18F]FDG-PET of giant-cell aortitis
    Walter, MA
    Melzer, RA
    Graf, M
    Tyndall, A
    Müller-Brand, J
    Nitzsche, EU
    RHEUMATOLOGY, 2005, 44 (05) : 690 - 691
  • [5] [18F]FDG PET IN GIANT-CELL ARTERITIS: A PROGNOSTIC TOOL FOR AORTIC COMPLICATIONS
    de Boysson, H.
    Liozon, E.
    Lambert, M.
    Parienti, J. -J.
    Boutemy, J.
    Ly, K.
    Hatron, P. -Y.
    Manrique, A.
    Bienvenu, B.
    ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 60 - 60
  • [6] Comparing Diagnostic Performance of Short and Long [18F]FDG-PET Acquisition Times in Giant Cell Arteritis
    Nienhuis, Pieter H.
    van Nieuwland, Marieke
    van Praagh, Gijs D.
    Markusiewicz, Karolina
    Colin, Edgar M.
    van der Geest, Kornelis S. M.
    Wagenaar, Nils
    Brouwer, Elisabeth
    Alves, Celina
    Slart, Riemer H. J. A.
    DIAGNOSTICS, 2024, 14 (01)
  • [7] Combination of whole body [18F]FDG PET angiography and PET/CT for giant cell arteritis
    Norikane, Takashi
    Yamamoto, Yuka
    Takami, Yasukage
    Mitamura, Katsuya
    Matsumoto, Keisuke
    Maeda, Yukito
    Dobashi, Hiroaki
    Nishiyama, Yoshihiro
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) : 779 - 780
  • [8] 18F-FDG PET in Giant Cell Arteritis
    Bidakhvidi, Niloefar Ahmadi
    Goffin, Karolien
    Van Laere, Koen
    Gheysens, Olivier
    Blockmans, Daniel
    CLINICAL NUCLEAR MEDICINE, 2020, 45 (02) : 170 - 171
  • [9] Combination of whole body [18F]FDG PET angiography and PET/CT for giant cell arteritis
    Takashi Norikane
    Yuka Yamamoto
    Yasukage Takami
    Katsuya Mitamura
    Keisuke Matsumoto
    Yukito Maeda
    Hiroaki Dobashi
    Yoshihiro Nishiyama
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 779 - 780
  • [10] A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images
    Sanaat, Amirhossein
    Boccalini, Cecilia
    Mathoux, Gregory
    Perani, Daniela
    Frisoni, Giovanni B.
    Haller, Sven
    Montandon, Marie-Louise
    Rodriguez, Cristelle
    Giannakopoulos, Panteleimon
    Garibotto, Valentina
    Zaidi, Habib
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, : 3518 - 3531