An improved contrastive learning network for semi-supervised multi-structure segmentation in echocardiography

被引:0
|
作者
Guo, Ziyu [1 ]
Zhang, Yuting [2 ]
Qiu, Zishan [3 ]
Dong, Suyu [1 ]
He, Shan [2 ]
Gao, Huan [1 ]
Zhang, Jinao [1 ]
Chen, Yingtao [1 ]
He, Bingtao [1 ]
Kong, Zhe [1 ]
Qiu, Zhaowen [1 ]
Li, Yan [1 ]
Li, Caijuan [4 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin, Peoples R China
[2] Univ Birmingham, Sch Comp Sci, Birmingham, England
[3] New York Univ Shanghai, Coll Art & Sci, Shanghai, Peoples R China
[4] Mudanjiang Med Univ, Dept Med Ultrason, Hongqi Hosp, Mudanjiang, Peoples R China
来源
关键词
echocardiography; deep learning; semi-supervised learning; images semantic segmentation; contrastive learning; QUANTIFICATION;
D O I
10.3389/fcvm.2023.1266260
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiac diseases have high mortality rates and are a significant threat to human health. Echocardiography is a commonly used imaging technique to diagnose cardiac diseases because of its portability, non-invasiveness and low cost. Precise segmentation of basic cardiac structures is crucial for cardiologists to efficiently diagnose cardiac diseases, but this task is challenging due to several reasons, such as: (1) low image contrast, (2) incomplete structures of cardiac, and (3) unclear border between the ventricle and the atrium in some echocardiographic images. In this paper, we applied contrastive learning strategy and proposed a semi-supervised method for echocardiographic images segmentation. This proposed method solved the above challenges effectively and made use of unlabeled data to achieve a great performance, which could help doctors improve the accuracy of CVD diagnosis and screening. We evaluated this method on a public dataset (CAMUS), achieving mean Dice Similarity Coefficient (DSC) of 0.898, 0.911, 0.916 with 1/4, 1/2 and full labeled data on two-chamber (2CH) echocardiography images, and of 0.903, 0.921, 0.928 with 1/4, 1/2 and full labeled data on four-chamber (4CH) echocardiography images. Compared with other existing methods, the proposed method had fewer parameters and better performance. The code and models are available at https://github.com/gpgzy/CL-Cardiac-segmentation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Semi-supervised Multi-structure Segmentation in Chest X-Ray Imaging
    Brioso, Ricardo Coimbra
    Pedrosa, Jodo
    Mendonca, Ana Maria
    Campilho, Aurelio
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 814 - 820
  • [2] DCL-NET: DUAL CONTRASTIVE LEARNING NETWORK FOR SEMI-SUPERVISED MULTI-ORGAN SEGMENTATION
    Wen, Lu
    Feng, Zhenghao
    Hou, Yun
    Wang, Peng
    Wu, Xi
    Zhou, Jiliu
    Wang, Yan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 1876 - 1880
  • [3] CHGNN: A Semi-Supervised Contrastive Hypergraph Learning Network
    Song, Yumeng
    Gu, Yu
    Li, Tianyi
    Qi, Jianzhong
    Liu, Zhenghao
    Jensen, Christian S.
    Yu, Ge
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4515 - 4530
  • [4] Adversarial Dense Contrastive Learning for Semi-Supervised Semantic Segmentation
    Wang, Ying
    Xuan, Ziwei
    Ho, Chiuman
    Qi, Guo-Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4459 - 4471
  • [5] Semi-supervised Semantic Segmentation via Prototypical Contrastive Learning
    Chen, Zenggui
    Lian, Zhouhui
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6696 - 6705
  • [6] CONTRASTIVE SEMI-SUPERVISED LEARNING FOR ASR
    Xiao, Alex
    Fuegen, Christian
    Mohamed, Abdelrahman
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3870 - 3874
  • [7] Multi-Augmentation-Based Contrastive Learning for Semi-Supervised Learning
    Wang, Jie
    Yang, Jie
    He, Jiafan
    Peng, Dongliang
    ALGORITHMS, 2024, 17 (03)
  • [8] Semi-supervised liver vessel segmentation method based on contrastive learning
    Liu, Zhe
    Hu, Rui
    Song, Yuqing
    Liu, Yi
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 52 (05): : 70 - 75
  • [9] PRCL: Probabilistic Representation Contrastive Learning for Semi-Supervised Semantic Segmentation
    Xie, Haoyu
    Wang, Changqi
    Zhao, Jian
    Liu, Yang
    Dan, Jun
    Fu, Chong
    Sun, Baigui
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (10) : 4343 - 4361
  • [10] Contrastive Regularization for Semi-Supervised Learning
    Lee, Doyup
    Kim, Sungwoong
    Kim, Ildoo
    Cheon, Yeongjae
    Cho, Minsu
    Han, Wook-Shin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3910 - 3919