Automatic Segmentation with Deep Learning in Radiotherapy

被引:7
|
作者
Isaksson, Lars Johannes [1 ,2 ]
Summers, Paul [3 ]
Mastroleo, Federico [1 ,4 ]
Marvaso, Giulia [1 ]
Corrao, Giulia [1 ]
Vincini, Maria Giulia [1 ]
Zaffaroni, Mattia [1 ]
Ceci, Francesco [2 ,5 ]
Petralia, Giuseppe [2 ,6 ]
Orecchia, Roberto [7 ]
Jereczek-Fossa, Barbara Alicja [1 ,2 ]
机构
[1] IEO European Inst Oncol IRCCS, Div Radiat Oncol, I-20141 Milan, Italy
[2] Univ Milan, Dept Oncol & Hematooncol, I-20141 Milan, Italy
[3] IEO European Inst Oncol IRCCS, Div Radiol, I-20141 Milan, Italy
[4] Univ Piemonte Orientale UPO, Dept Translat Med, I-20188 Novara, Italy
[5] IEO European Inst Oncol IRCCS, Div Nucl Med, I-20141 Milan, Italy
[6] IEO European Inst Oncol IRCCS, Dept Med Imaging & Radiat Sci, Precis Imaging & Res Unit, I-20141 Milan, Italy
[7] IEO European Inst Oncol IRCCS, Sci Directorate, I-20141 Milan, Italy
关键词
radiotherapy; segmentation; automatic; deep learning; artificial intelligence; artificial neural networks; MEDICAL IMAGE SEGMENTATION; BRAIN SEGMENTATION; MRI; DELINEATION; LESIONS; CANCER;
D O I
10.3390/cancers15174389
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Automatic segmentation of organs and other regions of interest is a promising approach for reducing the workload of doctors in radiotherapeutic planning, but it can be hard for doctors and researchers to keep up with current developments. This review evaluates 807 papers and reveals trends, commonalities, and gaps in the existing corpus. A set of recommendations for conducting effective segmentation studies is also provided.Abstract This review provides a formal overview of current automatic segmentation studies that use deep learning in radiotherapy. It covers 807 published papers and includes multiple cancer sites, image types (CT/MRI/PET), and segmentation methods. We collect key statistics about the papers to uncover commonalities, trends, and methods, and identify areas where more research might be needed. Moreover, we analyzed the corpus by posing explicit questions aimed at providing high-quality and actionable insights, including: "What should researchers think about when starting a segmentation study?", "How can research practices in medical image segmentation be improved?", "What is missing from the current corpus?", and more. This allowed us to provide practical guidelines on how to conduct a good segmentation study in today's competitive environment that will be useful for future research within the field, regardless of the specific radiotherapeutic subfield. To aid in our analysis, we used the large language model ChatGPT to condense information.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy
    Liu, Xi
    Li, Kai-Wen
    Yang, Ruijie
    Geng, Li-Sheng
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [2] Feasibility of Automatic Segmentation of Hippocampus Based on Deep Learning in Hippocampus-Sparing Radiotherapy
    Qiu, Q.
    Gong, G.
    Wang, L.
    Duan, J.
    Yin, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E137 - E138
  • [3] A deep learning based automatic segmentation approach for anatomical structures in intensity modulation radiotherapy
    Zhou, Han
    Li, Yikun
    Gu, Ying
    Shen, Zetian
    Zhu, Xixu
    Ge, Yun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 7506 - 7524
  • [4] A Deep Learning Approach for Automatic Segmentation during Daily MRI-Linac Radiotherapy of Glioblastoma
    Breto, Adrian L.
    Cullison, Kaylie
    Zacharaki, Evangelia I.
    Wallaengen, Veronica
    Maziero, Danilo
    Jones, Kolton
    Valderrama, Alessandro
    de la Fuente, Macarena I.
    Meshman, Jessica
    Azzam, Gregory A.
    Ford, John C.
    Stoyanova, Radka
    Mellon, Eric A.
    CANCERS, 2023, 15 (21)
  • [5] Patch-based deep learning automatic organ segmentation for online adaptive prostate radiotherapy
    Mukaidani, W.
    Shiinoki, T.
    Yuasa, Y.
    Fujimoto, K.
    Kawazoe, Y.
    Ishihara, Y.
    Sawada, A.
    Manabe, Y.
    Kajima, M.
    Tanaka, H.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S105 - S106
  • [6] AUTOMATIC SEGMENTATION OF GLOMERULAR SUBSTRUCTURES BY DEEP LEARNING
    Dendooven, Amelie
    Styanidis, Aristotelis
    Raes, Louis
    Van Craenenbroeck, Amaryllis
    Maeyens, Matthias
    Kotras, Konstantinos
    De Vos, Maarten
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 : I260 - I260
  • [7] A deep learning approach to the automatic segmentation of electrocardiograms
    Raaijmakers, F.
    Vessies, M.
    van de Leur, R.
    Schipaanboord, D.
    Echavarria, A.
    Schuurbiers, M.
    ten Broeke, J.
    van Es, R.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2023, 53
  • [8] Automatic Segmentation and Deep Learning of Bird Sounds
    Koops, Hendrik Vincent
    van Balen, Jan
    Wiering, Frans
    EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION, 2015, 9283 : 261 - 267
  • [9] Automatic segmentation of deep endometriosis in the rectosigmoid using deep learning
    Figueredo, Weslley Kelson Ribeiro
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Diniz, Joao Otavio Bandeira
    Brandao, Alice
    Oliveira, Marco Aurelio Pinho
    IMAGE AND VISION COMPUTING, 2024, 151
  • [10] Automatic Segmentation Using Deep Learning for Online Dose Optimization During Adaptive Radiotherapy of Cervical Cancer
    Rigaud, B.
    Anderson, B. M.
    Cazoulat, G.
    Yu, Z.
    Soderberg, J.
    Samuelsson, E.
    Ward, C.
    Svensson, S.
    Taku, N.
    Lofman, F.
    Venkatesan, A.
    Klopp, A. H.
    Brock, K. K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E458 - E458