Likelihood-based inference for linear mixed-effects models using the generalized hyperbolic distribution

被引:0
|
作者
Lachos, Victor H. [1 ]
Galea, Manuel [2 ]
Zeller, Camila [3 ]
Prates, Marcos O. [4 ]
机构
[1] Univ Connecticut, Dept Stat, Storrs, CT USA
[2] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
[3] Univ Fed Juiz de Fora, Dept Estat, Juiz De Fora, MG, Brazil
[4] Univ Fed Minas Gerais, Dept Estat, Belo Horizonte, Brazil
来源
STAT | 2023年 / 12卷 / 01期
关键词
EM algorithm; generalized hyperbolic distribution; heavy-tailed distributions; linear mixed-effects models; MULTIVARIATE; EFFICIENT; MIXTURES;
D O I
10.1002/sta4.602
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop statistical methodology for the analysis of data under nonnormal distributions, in the context of mixed effects models. Although the multivariate normal distribution is useful in many cases, it is not appropriate, for instance, when the data come from skewed and/or heavy-tailed distributions. To analyse data with these characteristics, in this paper, we extend the standard linear mixed effects model, considering the family of generalized hyperbolic distributions. We propose methods for statistical inference based on the likelihood function, and due to its complexity, the EM algorithm is used to find the maximum likelihood estimates with the standard errors and the exact likelihood value as a by-product. We use simulations to investigate the asymptotic properties of the expectation-maximization algorithm (EM) estimates and prediction accuracy. A real example is analysed, illustrating the usefulness of the proposed methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] LIKELIHOOD-BASED INFERENCE FOR MIXED-EFFECTS MODELS WITH CENSORED RESPONSE USING THE MULTIVARIATE-t DISTRIBUTION
    Matos, Larissa A.
    Prates, Marcos O.
    Chen, Ming-Hui
    Lachos, Victor H.
    STATISTICA SINICA, 2013, 23 (03) : 1323 - 1345
  • [2] Likelihood-based inference for generalized linear mixed models: Inference with the R package glmm
    Knudson, Christina
    Benson, Sydney
    Geyer, Charles
    Jones, Galin
    STAT, 2021, 10 (01):
  • [3] Computational aspects of likelihood-based inference for the univariate generalized hyperbolic distribution
    van Wyk, Arnold
    Azzalini, Adelchi
    Bekker, Andriette
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [4] Causal inference using multivariate generalized linear mixed-effects models
    Xu, Yizhen
    Kim, Ji Soo
    Hummers, Laura K.
    Shah, Ami A.
    Zeger, Scott L.
    BIOMETRICS, 2024, 80 (03)
  • [5] A family of linear mixed-effects models using the generalized Laplace distribution
    Geraci, Marco
    Farcomeni, Alessio
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2665 - 2682
  • [6] Maximum likelihood inference in robust linear mixed-effects models using multivariate t distributions
    Song, Peter X. -K.
    Zhang, Peng
    Qu, Annie
    STATISTICA SINICA, 2007, 17 (03) : 929 - 943
  • [7] Efficient likelihood-based inference for the generalized Pareto distribution
    Nagatsuka, Hideki
    Balakrishnan, N.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (06) : 1153 - 1185
  • [8] Efficient likelihood-based inference for the generalized Pareto distribution
    Hideki Nagatsuka
    N. Balakrishnan
    Annals of the Institute of Statistical Mathematics, 2021, 73 : 1153 - 1185
  • [9] Fiducial Inference in Linear Mixed-Effects Models
    Yang, Jie
    Li, Xinmin
    Gao, Hongwei
    Zou, Chenchen
    ENTROPY, 2025, 27 (02)
  • [10] Restricted likelihood inference for generalized linear mixed models
    Bellio, Ruggero
    Brazzale, Alessandra R.
    STATISTICS AND COMPUTING, 2011, 21 (02) : 173 - 183