COMPARISON OF ESTIMATION METHODS FOR THE KUMARASWAMY WEIBULL DISTRIBUTION

被引:0
|
作者
Ergenc, Cansu [1 ]
Senoglu, Birdal [2 ]
机构
[1] Ankara Yildirim Beyazit Univ, Dept Finance & Banking, TR-06760 Ankara, Turkiye
[2] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkiye
关键词
KwWeibull distribution; Weibull distribution; estimation methods; Monte Carlo simulation; efficiency; PARAMETER; FAMILY; MODEL;
D O I
10.31801/cfsuasmas.1086966
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, the performances of the different parameter esti-mation methods are compared for the Kumaraswamy Weibull distribution via Monte Carlo simulation study. Maximum Likelihood (ML), Least Squares (LS), Weighted Least Squares (WLS), Cramer-von Mises (CM) and Anderson Darling (AD) methods are used in the comparisons. The results of the Monte Carlo simulation study demonstrate that ML estimators for the parameters of the Kumaraswamy Weibull distribution are more efficient than the other estimators. It is followed by AD estimator. At the end of the study, a real data set taken from the literature is used to illustrate the applicability of the Kumaraswamy Weibull distribution.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Bayesian Estimation of the Kumaraswamy Inverse Weibull Distribution
    Felipe R. S. de Gusmão
    Vera L. D. Tomazella
    Ricardo S. Ehlers
    Journal of Statistical Theory and Applications, 2017, 16 (2): : 248 - 260
  • [2] Comparison of estimation methods for the Weibull distribution
    Teimouri, Mahdi
    Hoseini, Seyed M.
    Nadarajah, Saralees
    STATISTICS, 2013, 47 (01) : 93 - 109
  • [3] COMPARISON OF PARAMETER ESTIMATION METHODS IN WEIBULL DISTRIBUTION
    Koksal Babacan, Esin
    Kaya, Samet
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (03): : 1609 - 1621
  • [4] COMPARISON OF METHODS OF ESTIMATION OF PARAMETERS OF THE WEIBULL DISTRIBUTION
    ALBAIDHANI, FA
    SINCLAIR, CD
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1987, 16 (02) : 373 - 384
  • [5] The New Kumaraswamy Kumaraswamy Weibull Distribution with Application
    Mahmoud, Mahmoud R.
    El-Sherpieny, El-Sayed A.
    Ahmed, Mohamed A.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2016, 12 (01) : 165 - 184
  • [6] Kumaraswamy distribution: different methods of estimation
    Sanku Dey
    Josmar Mazucheli
    Saralees Nadarajah
    Computational and Applied Mathematics, 2018, 37 : 2094 - 2111
  • [7] Kumaraswamy distribution: different methods of estimation
    Dey, Sanku
    Mazucheli, Josmar
    Nadarajah, Saralees
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2094 - 2111
  • [8] COMPARISON OF ESTIMATION METHODS OF THE POWER GENERALIZED WEIBULL DISTRIBUTION
    Dey, Sanku
    Nassar, Mazen
    Ali, Sajid
    Kumar, Devendra
    Raheem, Enayetur
    STATISTICA, 2022, 82 (04) : 339 - 372
  • [9] Lindley procedure and MCMC technique in Bayesian estimation for Kumaraswamy Weibull distribution
    Eissa, Fathy H.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2022, 9 (12): : 57 - 67
  • [10] The Kumaraswamy-Inverse Weibull Distribution
    Shahbaz, Muhammad Qaiser
    Shahbaz, Saman
    Butt, Nadeem Shafique
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2012, 8 (03) : 479 - 489