Iterative Deep-Learning Denoising in Bone SPECT-CT Reconstruction Based on Simulations from Clinical Data

被引:0
|
作者
Ziv, O. [1 ]
Yuzefovich, B. [1 ]
Sachs, J. [1 ]
Kovalski, G. [1 ]
机构
[1] GE Healthcare, Haifa, Israel
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OP-229
引用
收藏
页码:S101 / S102
页数:2
相关论文
共 50 条
  • [1] Deep-learning denoising minimizes radiation exposure in neck CT beyond the limits of conventional reconstruction
    Plajer, David
    Hahn, Marlene
    Chaika, Marianna
    Mader, Markus
    Mueck, Jonas
    Nikolaou, Konstantin
    Afat, Saif
    Brendlin, Andreas S.
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 178
  • [2] Deep-learning reconstruction to improve image quality of myocardial dynamic CT perfusion: comparison with hybrid iterative reconstruction
    Takafuji, M.
    Kitagawa, K.
    Mizutani, S.
    Oka, R.
    Kisou, R.
    Sakaguchi, S.
    Ichikawa, K.
    Izumi, D.
    Sakuma, H.
    CLINICAL RADIOLOGY, 2022, 77 (10) : E771 - E775
  • [3] Comparison of post reconstruction- and reconstruction-based deep learning denoising methods in cardiac SPECT
    Sohlberg, Antti
    Kangasmaa, Tuija
    Tikkakoski, Antti
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (06)
  • [4] Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images
    ZAFRAN HUSSAIN SHAH
    MARCEL MüLLER
    TUNG-CHENG WANG
    PHILIP MAURICE SCHEIDIG
    AXEL SCHNEIDER
    MARK SCHüTTPELZ
    THOMAS HUSER
    WOLFRAM SCHENCK
    Photonics Research, 2021, 9 (05) : 570 - 583
  • [5] Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images
    Shah, Zafran Hussain
    Mueller, Marcel
    Wang, Tung-Cheng
    Scheidig, Philip Maurice
    Schneider, Axel
    Schuettpelz, Mark
    Huser, Thomas
    Schenck, Wolfram
    PHOTONICS RESEARCH, 2021, 9 (05) : B168 - B181
  • [6] Deep-learning reconstruction of complex dynamical networks from incomplete data
    Ding, Xiao
    Kong, Ling-Wei
    Zhang, Hai-Feng
    Lai, Ying-Cheng
    CHAOS, 2024, 34 (04)
  • [7] Simultaneous denoising and reconstruction of distributed acoustic sensing seismic data via a multicascade deep-learning method
    Cheng, Ming
    Lin, Jun
    Dong, Xintong
    Lu, Shaoping
    Zhong, Tie
    GEOPHYSICS, 2023, 88 (06) : WC145 - WC162
  • [8] A two-stage deep-learning framework for CT denoising based on a clinically structure-unaligned paired data set
    Hu, Ruibao
    Luo, Honghong
    Zhang, Lulu
    Liu, Lijian
    Liu, Honghong
    Wu, Ruodai
    Luo, Dehong
    Liu, Zhou
    Hu, Zhanli
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (01) : 335 - 351
  • [9] Applying a CT texture analysis model trained with deep-learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis
    Wang, Qingle
    Xu, Shijie
    Zhang, Guozhi
    Zhang, Xingwei
    Gu, Junying
    Yang, Shuyi
    Zeng, Mengsu
    Zhang, Zhiyong
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (11):
  • [10] CT-free quantitative SPECT for automatic evaluation of %thyroid uptake based on deep-learning
    Kwon, Kyounghyoun
    Hwang, Donghwi
    Oh, Dongkyu
    Kim, Ji Hye
    Yoo, Jihyung
    Lee, Jae Sung
    Lee, Won Woo
    EJNMMI PHYSICS, 2023, 10 (01)