Epigenetic Reprogramming in Mice and Humans: From Fertilization to Primordial Germ Cell Development

被引:15
|
作者
Singh, Aditi [1 ,2 ]
Rappolee, Daniel A. [1 ,3 ,4 ,5 ]
Ruden, Douglas M. [1 ,2 ,4 ]
机构
[1] Wayne State Univ, CS Mott Ctr, Dept Obstet & Gynecol, Detroit, MI 48202 USA
[2] Wayne State Univ, Ctr Mol Med & Genet, Detroit, MI 48202 USA
[3] Mech & Management Corp, Reprod Stress Measurement, 135 Lake Shore Rd, Grosse Pointe Farms, MI 48236 USA
[4] Wayne State Univ, Inst Environm Hlth Sci, Detroit, MI 48202 USA
[5] Wayne State Univ, Dept Physiol, Detroit, MI 48202 USA
关键词
epigenetic reprogramming; developmental toxicity; embryo development; IMPRINTED X-INACTIVATION; EMBRYONIC STEM-CELLS; DNA METHYLATION; CHROMOSOME INACTIVATION; PRENATAL EXPOSURE; STRUCTURAL BASIS; GROUND-STATE; CXXC DOMAIN; MOUSE; CHROMATIN;
D O I
10.3390/cells12141874
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In this review, advances in the understanding of epigenetic reprogramming from fertilization to the development of primordial germline cells in a mouse and human embryo are discussed. To gain insights into the molecular underpinnings of various diseases, it is essential to comprehend the intricate interplay between genetic, epigenetic, and environmental factors during cellular reprogramming and embryonic differentiation. An increasing range of diseases, including cancer and developmental disorders, have been linked to alterations in DNA methylation and histone modifications. Global epigenetic reprogramming occurs in mammals at two stages: post-fertilization and during the development of primordial germ cells (PGC). Epigenetic reprogramming after fertilization involves rapid demethylation of the paternal genome mediated through active and passive DNA demethylation, and gradual demethylation in the maternal genome through passive DNA demethylation. The de novo DNA methyltransferase enzymes, Dnmt3a and Dnmt3b, restore DNA methylation beginning from the blastocyst stage until the formation of the gastrula, and DNA maintenance methyltransferase, Dnmt1, maintains methylation in the somatic cells. The PGC undergo a second round of global demethylation after allocation during the formative pluripotent stage before gastrulation, where the imprints and the methylation marks on the transposable elements known as retrotransposons, including long interspersed nuclear elements (LINE-1) and intracisternal A-particle (IAP) elements are demethylated as well. Finally, DNA methylation is restored in the PGC at the implantation stage including sex-specific imprints corresponding to the sex of the embryo. This review introduces a novel perspective by uncovering how toxicants and stress stimuli impact the critical period of allocation during formative pluripotency, potentially influencing both the quantity and quality of PGCs. Furthermore, the comprehensive comparison of epigenetic events between mice and humans breaks new ground, empowering researchers to make informed decisions regarding the suitability of mouse models for their experiments.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Primordial Germ-Cell Development and Epigenetic Reprogramming in Mammals
    Leitch, Harry G.
    Tang, Walfred W. C.
    Surani, M. Azim
    EPIGENETICS AND DEVELOPMENT, 2013, 104 : 149 - 187
  • [2] Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte
    Hill, Peter W. S.
    Leitch, Harry G.
    Requena, Cristina E.
    Sun, Zhiyi
    Amouroux, Rachel
    Roman-Trufero, Monica
    Borkowska, Malgorzata
    Terragni, Jolyon
    Vaisvila, Romualdas
    Linnett, Sarah
    Bagci, Hakan
    Dharmalingham, Gopuraja
    Haberle, Vanja
    Lenhard, Boris
    Zheng, Yu
    Pradhan, Sriharsa
    Hajkova, Petra
    NATURE, 2018, 555 (7696) : 392 - +
  • [3] Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte
    Peter W. S. Hill
    Harry G. Leitch
    Cristina E. Requena
    Zhiyi Sun
    Rachel Amouroux
    Monica Roman-Trufero
    Malgorzata Borkowska
    Jolyon Terragni
    Romualdas Vaisvila
    Sarah Linnett
    Hakan Bagci
    Gopuraja Dharmalingham
    Vanja Haberle
    Boris Lenhard
    Yu Zheng
    Sriharsa Pradhan
    Petra Hajkova
    Nature, 2018, 555 : 392 - 396
  • [4] Epigenetic reprogramming in mouse primordial germ cells
    Hajkova, P
    Erhardt, S
    Lane, N
    Haaf, T
    El-Maarri, O
    Reik, W
    Walter, J
    Surani, MA
    MECHANISMS OF DEVELOPMENT, 2002, 117 (1-2) : 15 - 23
  • [5] Primordial germ cell reprogramming
    Emily Niemitz
    Nature Genetics, 2013, 45 (2) : 123 - 123
  • [6] Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells
    Saitou, Mitinori
    Kagiwada, Saya
    Kurimoto, Kazuki
    DEVELOPMENT, 2012, 139 (01): : 15 - 31
  • [7] Epigenetic reprogramming in mouse and human primordial germ cells
    Sun-Min Lee
    M. Azim Surani
    Experimental & Molecular Medicine, 2024, 56 (12) : 2578 - 2587
  • [9] Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution
    De Felici, Massimo
    STEM CELLS INTERNATIONAL, 2011, 2011
  • [10] An Initial Investigation of an Alternative Model to Study rat Primordial Germ Cell Epigenetic Reprogramming
    Isabelle Hernandez Cantão
    Renato Borges Tesser
    Taiza Stumpp
    Biological Procedures Online, 2017, 19