Deep Learning-Based Image Registration in Dynamic Myocardial Perfusion CT Imaging

被引:4
|
作者
Lara-Hernandez, A. [1 ,2 ]
Rienmueller, T. [1 ]
Juarez, I. [2 ]
Perez, M. [2 ]
Reyna, F. [3 ,4 ]
Baumgartner, D. [5 ,6 ]
Makarenko, V. N. [7 ]
Bockeria, O. L. [7 ]
Maksudov, M. [8 ,9 ]
Rienmueller, R. [5 ,6 ]
Baumgartner, C. [1 ]
机构
[1] Graz Univ, Inst Hlth Care Engn, European Testing Ctr Med Devices, A-8010 Graz, Austria
[2] Galileo Univ, Dept Biomed Engn, Guatemala City 01010, Guatemala
[3] Francisco Marroquin Univ, Fac Med, Guatemala City 01010, Guatemala
[4] La Paz Hosp, Dept Radiol, Guatemala City 01010, Guatemala
[5] Med Univ Graz, Clin Div Pediat Cardiol, A-8036 Graz, Austria
[6] Med Univ Graz, Dept Gen Radiol, A-8036 Graz, Austria
[7] AN Bakulev Natl Med Res Ctr Cardiovasc Surg, Moscow 121552, Russia
[8] Vakhidov Republican Specialized Ctr Surg, Fedorovich Klin, Tashkent 100061, Uzbekistan
[9] Vakhidov Republican Specialized Ctr Surg, Dept Radiol, Tashkent 100061, Uzbekistan
关键词
Computed tomography; Myocardium; Strain; Image registration; Magnetic resonance imaging; Image sequences; Heart; Registration; deep learning; dynamic cardiac imaging; computed tomography; myocardial perfusion; MOTION CORRECTION; QUANTIFICATION; COMPENSATION; FRAMEWORK;
D O I
10.1109/TMI.2022.3214380
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Registration of dynamic CT image sequences is a crucial preprocessing step for clinical evaluation of multiple physiological determinants in the heart such as global and regional myocardial perfusion. In this work, we present a deformable deep learning-based image registration method for quantitative myocardial perfusion CT examinations, which in contrast to previous approaches, takes into account some unique challenges such as low image quality with less accurate anatomical landmarks, dynamic changes of contrast agent concentration in the heart chambers and tissue, and misalignment caused by cardiac stress, respiration, and patient motion. The introduced method uses a recursive cascade network with a ventricle segmentation module, and a novel loss function that accounts for local contrast changes over time. It was trained and validated on a dataset of n = 118 patients with known or suspected coronary artery disease and/or aortic valve insufficiency. Our results demonstrate that the proposed method is capable of registering dynamic cardiac perfusion sequences by reducing local tissue displacements of the left ventricle (LV), whereas contrast changes do not affect the registration and image quality, in particular the absolute CT (HU) values of the entire CT sequence. In addition, the deep learning-based approach presented reveals a short processing time of a few seconds compared to conventional image registration methods, demonstrating its application potential for quantitative CT myocardial perfusion measurements in daily clinical routine.
引用
收藏
页码:684 / 696
页数:13
相关论文
共 50 条
  • [1] Dynamic CT myocardial perfusion without image registration
    Hubbard, Logan
    Malkasian, Shant
    Molloi, Sabee
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Dynamic CT myocardial perfusion without image registration
    Logan Hubbard
    Shant Malkasian
    Sabee Molloi
    [J]. Scientific Reports, 12
  • [3] A deep learning-based automated diagnosis system for SPECT myocardial perfusion imaging
    Kusumoto, Dai
    Akiyama, Takumi
    Hashimoto, Masahiro
    Iwabuchi, Yu
    Katsuki, Toshiomi
    Kimura, Mai
    Akiba, Yohei
    Sawada, Hiromune
    Inohara, Taku
    Yuasa, Shinsuke
    Fukuda, Keiichi
    Jinzaki, Masahiro
    Ieda, Masaki
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Deep learning-based lung image registration: A review
    Xiao, Hanguang
    Xue, Xufeng
    Zhu, Mi
    Jiang, Xin
    Xia, Qingling
    Chen, Kai
    Li, Huanqi
    Long, Li
    Peng, Ke
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [5] Image Registration and Perfusion Imaging: Application to Dynamic Circular Cardiac CT
    Isola, Alfonso A.
    Schmitt, Holger
    van Stevendaal, Udo
    Begemann, Philipp G.
    Grass, Michael
    [J]. 2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2362 - 2365
  • [6] A review of deep learning-based deformable medical image registration
    Zou, Jing
    Gao, Bingchen
    Song, Youyi
    Qin, Jing
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [7] Dynamic CT myocardial perfusion imaging
    Nieman, Koen
    Balla, Sujana
    [J]. JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2020, 14 (04) : 303 - 306
  • [8] Dynamic CT myocardial perfusion imaging
    Caruso, Damiano
    Eid, Marwen
    Schoepf, U. Joseph
    Jin, Kwang Nam
    Varga-Szemes, Akos
    Tesche, Christian
    Mangold, Stefanie
    Spandorfer, Adam
    Laghi, Andrea
    De Cecco, Carlo N.
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (10) : 1893 - 1899
  • [9] IMPROVED QUANTITATIVE SPECT MYOCARDIAL PERFUSION IMAGING USING DEEP LEARNING-BASED ATTENUATION CORRECTION
    Hagio, Tomoe
    Poitrasson-Riviere, Alexis
    Moody, Jonathan B.
    Renaud, Jennifer M.
    Arida-Moody, Liliana
    Shah, Ravi V.
    Ficaro, Edward P.
    Murthy, Venkatesh Locharla
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 1192 - 1192
  • [10] Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT
    Isola, A. A.
    Schmitt, H.
    van Stevendaal, U.
    Begemann, P. G.
    Coulon, P.
    Boussel, L.
    Grass, M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (18): : 5925 - 5947