Analysis and mitigation of residual exchange coupling in linear spin-qubit arrays

被引:3
|
作者
Heinz, Irina [1 ]
Mills, Adam R. [2 ]
Petta, Jason R. [3 ,4 ]
Burkard, Guido [1 ]
机构
[1] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Ctr Quantum Sci & Engn, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
关键词
D O I
10.1103/PhysRevResearch.6.013153
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent advancements of quantum computing utilizing spin qubits, it has been demonstrated that this platform possesses the potential for implementing two-qubit gates with fidelities exceeding 99.5%. However, as with other qubit platforms, it is not feasible to completely turn qubit couplings off. This study aims to investigate the impact of coherent error matrices in gate set tomography by employing a double quantum dot. We evaluate the infidelity caused by residual exchange between spins and compare various mitigation approaches, including the use of adjusted timing through simple drives, considering different parameter settings in the presence of charge noise. Furthermore, we extend our analysis to larger arrays of exchange-coupled spin qubits to provide an estimation of the expected fidelity. In particular, we demonstrate the influence of residual exchange on a single-qubit Y gate and the native two-qubit SWAP gate in a linear chain. Our findings emphasize the significance of accounting for residual exchange when scaling up spin-qubit devices and highlight the tradeoff between the effects of charge noise and residual exchange in mitigation techniques.
引用
收藏
页数:13
相关论文
共 18 条
  • [1] Tunable Spin-Qubit Coupling Mediated by a Multielectron Quantum Dot
    Srinivasa, V.
    Xu, H.
    Taylor, J. M.
    PHYSICAL REVIEW LETTERS, 2015, 114 (22)
  • [2] Virtual-photon-mediated spin-qubit–transmon coupling
    A. J. Landig
    J. V. Koski
    P. Scarlino
    C. Müller
    J. C. Abadillo-Uriel
    B. Kratochwil
    C. Reichl
    W. Wegscheider
    S. N. Coppersmith
    Mark Friesen
    A. Wallraff
    T. Ihn
    K. Ensslin
    Nature Communications, 10
  • [3] Proposed spin-qubit controlled-NOT gate robust against noisy coupling
    Kestner, J. P.
    Das Sarma, S.
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [4] Atomistic insights on P implantation by using molecular ion beams for scalable spin-qubit arrays
    Bouvier, Tomas Fernandez
    Jantunen, Ville
    Vihuri, Saana
    Cazalilla, Alvaro Lopez
    Djurabekova, Flyura
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (10)
  • [5] Decoherence in exchange-coupled quantum spin-qubit systems: Impact of multiqubit interactions and geometric connectivity
    Fu, Quan
    Wu, Jiahao
    Wang, Xin
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [6] Coherent spin–photon coupling using a resonant exchange qubit
    A. J. Landig
    J. V. Koski
    P. Scarlino
    U. C. Mendes
    A. Blais
    C. Reichl
    W. Wegscheider
    A. Wallraff
    K. Ensslin
    T. Ihn
    Nature, 2018, 560 : 179 - 184
  • [7] Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays
    Heinz, Irina
    Burkard, Guido
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [8] Coherent spin-photon coupling using a resonant exchange qubit
    Landig, A. J.
    Koski, J. V.
    Scarlino, P.
    Mendes, U. C.
    Blais, A.
    Reichl, C.
    Wegscheider, W.
    Wallraff, A.
    Ensslin, K.
    Ihn, T.
    NATURE, 2018, 560 (7717) : 179 - 184
  • [9] Crosstalk analysis for simultaneously driven two-qubit gates in spin qubit arrays
    Heinz, Irina
    Burkard, Guido
    PHYSICAL REVIEW B, 2022, 105 (08)
  • [10] Wave propagation and coupling in linear arrays with application to the analysis of large arrays
    Craeye, Christophe
    Boryssenko, Anatoliy O.
    Schaubert, Daniel H.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (07) : 1971 - 1978