Blowup of the Solutions for a Reaction-Advection-Diffusion Equation with Free Boundaries

被引:0
|
作者
Yang, Jian [1 ]
机构
[1] Jinan Univ, Sch Math Sci, Jinan 250022, Peoples R China
来源
关键词
Nonlinear reaction-advection-diffusion equation; one-phase Stefan problem; decay; blowup; MODEL;
D O I
10.4208/jpde.v36.n4.5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a blowup problem of a reaction-advection-diffusion equation with double free boundaries and aim to use the dynamics of such a problem to describe the heat transfer and temperature change of a chemical reaction in advective environment with the free boundary representing the spreading front of the heat. We study the influence of the advection on the blowup properties of the solutions and conclude that large advection is not favorable for blowup. Moreover, we give the decay estimates of solutions and the two free boundaries converge to a finite limit for small initial data.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [1] Dynamical Analysis on Traveling Wave of a Reaction-Advection-Diffusion Equation with Double Free Boundaries
    Ji Changqing
    Yang Pan
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (04): : 379 - 392
  • [2] On a reaction-advection-diffusion equation with Robin and free boundary conditions
    Zhu Dandan
    Ren Jingli
    APPLICABLE ANALYSIS, 2020, 99 (08) : 1344 - 1358
  • [3] Numerical solution of the reaction-advection-diffusion equation on the sphere
    Pudykiewicz, JA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (01) : 358 - 390
  • [4] Numerical Solution of Nonlinear Reaction-Advection-Diffusion Equation
    Singh, Anup
    Das, S.
    Ong, S. H.
    Jafari, H.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (04):
  • [5] Entire solutions in reaction-advection-diffusion equations in cylinders
    Li, Wan-Tong
    Liu, Nai-Wei
    Wang, Zhi-Cheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (05): : 492 - 504
  • [6] BOUNDARY CONTROL PROBLEM FOR THE REACTION-ADVECTION-DIFFUSION EQUATION WITH A MODULUS DISCONTINUITY OF ADVECTION
    Bulatov, P. E.
    Cheng, Han
    Wei, Yuxuan
    Volkov, V. T.
    Levashova, N. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (01) : 1097 - 1109
  • [7] Exponential asymptotics, the viscid Burgers' equation, and standing wave solutions for a reaction-advection-diffusion model
    Laforgue, JGL
    O'Malley, RE
    STUDIES IN APPLIED MATHEMATICS, 1999, 102 (02) : 137 - 172
  • [8] Entire solutions in monostable reaction-advection-diffusion equations in infinite cylinders
    Sheng, Wei-Jie
    Liu, Nai-Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3540 - 3547
  • [9] Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders
    Liu, Nai-Wei
    Li, Wan-Tong
    Wang, Zhi-Cheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (11) : 4249 - 4267
  • [10] ON A PARTIALLY DEGENERATE REACTION-ADVECTION-DIFFUSION SYSTEM WITH FREE BOUNDARY CONDITIONS
    Zhu, Dandan
    Xu, Ying
    Li, Xueping
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01): : 21 - 38