Sharp inequalities for Toader mean in terms of other bivariate means

被引:0
|
作者
Jiang, Wei-Dong [1 ]
机构
[1] Weihai Vocat Coll, Dept Informat Engn, Weihai 264210, Shandong, Peoples R China
来源
关键词
Toader mean; complete elliptic integrals; arithmetic mean; centroidal mean; contraharmonic mean; COMPLETE ELLIPTIC INTEGRALS; BOUNDS; APPROXIMATIONS;
D O I
10.15672/hujms.1106426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the author discovers the best constants & alpha;1, & alpha;2, & alpha;3, & beta;1, & beta;2 and & beta;3 for the double inequalities (a - b)2n+2 n n-ary sumation -1 )2k+2 & alpha;1A < T(a, b)-4 1C-3 2,k)2 (1 (a - b (a - b)2n+2 4A-A < & beta;1A a + b 4((k + 1)!)2 a + b a + b k=1 (a - b )2n+2 n n-ary sumation -1 )2k+2 & alpha;2A < T(a, b)-3 4C-1 2, k)2 (1 (a - b (a - b)2n+2 4A-A < & beta;2A a + b 4((k + 1)!)2 a + b a + b k=1 and (a - b)2n+2 n n-ary sumation -1 )2k+2 & alpha;3A < 4 5T (a, b)+1 2, k)2 (1 (a - b (a - b )2n+2 5H-A-A < & beta;3A a + b 5((k + 1)!)2 a + b a + b k=1 to be valid for all a, b > 0 with a = b and n = 1, 2, & BULL; & BULL; & BULL;, where a2 + b2 C & EQUIV; C(a, b) = H & EQUIV; H(a, b) = 2(a2 + ab + b2) a + b a + b , C & EQUIV; C(a, b) = 3(a + b) , A & EQUIV; A(a, b) = 2 , 2ab 2 & int; & pi;/2 & RADIC; a + b, T(a, b) = a2 cos2 & theta; + b2 sin2 & theta; d & theta; & pi; 0 are respectively the contraharmonic, centroidal, arithmetic, harmonic and Toader means of two positive numbers a and b, (a, n) = a(a + 1)(a + 2)(a + 3) & BULL; & BULL; & BULL; (a + n - 1) denotes the shifted factorial function. As an application of the above inequalities, the author also find a new bounds for the complete elliptic integral of the second kind.
引用
下载
收藏
页码:841 / 849
页数:9
相关论文
共 50 条
  • [1] SHARP INEQUALITIES FOR THE TOADER MEAN OF ORDER-1 IN TERMS OF OTHER BIVARIATE MEANS
    Qian, Wei-Mao
    Chu, Hong-Hu
    Wang, Miao-Kun
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (01): : 127 - 141
  • [2] BOUNDS FOR THE ARITHMETIC MEAN IN TERMS OF THE TOADER MEAN AND OTHER BIVARIATE MEANS
    Hua, Yun
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 203 - 210
  • [3] On Approximating the Toader Mean by Other Bivariate Means
    Wang, Jun-Li
    Qian, Wei-Mao
    He, Zai-Yin
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [4] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [5] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [6] Sharp Bounds for Toader Mean in terms of Arithmetic and Second Contraharmonic Means
    Qian, Wei-Mao
    Song, Ying-Qing
    Zhang, Xiao-Hui
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [7] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Li, Jun-Feng
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [8] Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means
    Jun-Feng Li
    Wei-Mao Qian
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2015
  • [9] SHARP BOUNDS FOR THE TOADER-QI MEAN IN TERMS OF HARMONIC AND GEOMETRIC MEANS
    Qian, Wei-Mao
    Zhang, Xiao-Hui
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (01): : 121 - 127
  • [10] SHARP BOUNDS FOR TOADER-QI MEAN IN TERMS OF LOGARITHMIC AND IDENTRIC MEANS
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Song, Ying-Qing
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02): : 721 - 730