Influence of overlap precipitate on the strength-ductility synergy of the Al-10.0Zn-3.0Mg-2.5Cu alloy with a new aging strategy

被引:7
|
作者
Ren, Xianwei [1 ,3 ,4 ]
Zhang, Yuxing [2 ]
Zhao, Xi [2 ,3 ]
Zhang, Zhimin [1 ,3 ]
Wang, Qiang [1 ,3 ]
Wang, Siqi [2 ]
He, Yayun [2 ]
Liu, Hailong [4 ]
机构
[1] North Univ China, Sch Mat Sci & Engn, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Mech & Elect Engn, Taiyuan 030051, Peoples R China
[3] North Univ China, Engn Technol Res Ctr Integrated Precis Forming Sha, Taiyuan 030051, Peoples R China
[4] Shandong Zhuoyue Aluminum Grp Co Ltd, Jining 272000, Peoples R China
关键词
Al-Zn-Mg-Cu alloy; Overlap precipitates; Pre-deformation; Strength-ductility synergy; MG-CU ALLOY; ALUMINUM-ALLOY; MICROSTRUCTURE EVOLUTION; MECHANICAL-PROPERTIES; ATOMIC-SCALE; AL; BEHAVIOR; PREDEFORMATION; DEFORMATION;
D O I
10.1016/j.jmrt.2023.01.169
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a new aging strategy in which natural aging, combined with pre -deformation, is embedded between the solid solution and artificial aging. The overlap pre-cipitates (ri'-rid) were formed after this process, which included homogeneous (ri') and heterogeneous precipitates (rid). The overlap precipitates exhibited a better dislocation storage ability than traditional single precipitates, contributing to their superior work hardening rate and strengthen effect. The ultimate tensile strength and elongation of the representative sample were 800.5 MPa and 7.4%, respectively. Compared to the traditional peak aging sample (770.8 MPa, 3.8%), the strength and ductility of Al-10.0Zn-3.0Mg-2.5Cu alloy were further improved synergistically through regulating overlap precipitates. Notably, the proposed novel aging strategy showed excellent engineering application potential.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2730 / 2739
页数:10
相关论文
共 50 条
  • [1] Influence of the solid solution duration on the microstructure and mechanical properties of the Al-10.0Zn-3.0Mg-2.5Cu alloy
    Ren, Xianwei
    Zhang, Jinlong
    Zhang, Zhimin
    Wang, Qiang
    Xue, Yong
    Liu, Haijun
    Meng, Mo
    Zhao, Xi
    Liu, Hailong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 896
  • [2] New strategy to achieve fine recrystallized microstructure and strength-ductility synergy in extruded Mg-Al-Zn alloy
    Nakata, T.
    Oki, R.
    Kanitani, S.
    Matsumoto, Y.
    Ogawa, M.
    Shimizu, K.
    Kamado, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [3] Synergy of strength-ductility in a novel Al-Zn-Mg-Cu-Zr-Sc-Hf alloy through optimizing hierarchical microstructures
    Wu, Mingdong
    Xiao, Daihong
    Yuan, Shuo
    Li, Zeyu
    Yin, Xiao
    Wang, Juan
    Huang, Lanping
    Liu, Wensheng
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 212 : 105 - 122
  • [4] Synergistic improvement of strength and ductility of an ultra-high strength Al-Zn-Mg-Cu alloy through a new aging strategy
    Long, Mengjun
    Jiang, Feng
    Wu, Feifei
    Su, Yuanming
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [5] Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy
    Fu, Wei
    Dang, Pengfei
    Guo, Shengwu
    Ren, Zijun
    Fang, Daqing
    Ding, Xiangdong
    Sun, Jun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 134 : 67 - 80
  • [6] Effect of Electropulsing Current Density on the Strength-Ductility Synergy of Extruded Mg-6Al-1Zn Alloy
    Ma, Dong
    Xu, Chunjie
    Lu, Yaohan
    Sui, Shang
    Tian, Jun
    Zeng, Fanhong
    Remennik, Sergei
    Shechtman, Dan
    Zhang, Zhongming
    Guo, Can
    Qi, Yuanshen
    MATERIALS, 2025, 18 (04)
  • [7] A new synergy to overcome the strength-ductility dilemma in Al-Si-Cu alloy by adding AlZrNiTi master alloy
    Zhang, Jie
    Li, Qinglin
    Liu, Gege
    Zhang, Xiaoyu
    Wang, Kailong
    Hu, Pengtao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 915
  • [8] Superior strength-ductility synergy in ultrafine-grained Al-5Mg alloy
    Mavlyutov, Aydar M.
    Kirilenko, Demid A.
    Levin, Aleksandr A.
    Murashkin, Maxim Yu.
    Sadykov, Dinislam I.
    Orlova, Tatiana S.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 2329 - 2343
  • [9] Achieving strength-ductility synergy in a novel Al-Mg-Zn-Cu-Si lightweight multi-component alloy via eutectic structure refinement
    Wen, Jinchuan
    Cheng, Junhua
    Huang, Yuanchun
    Liu, Yu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [10] Achieving well-balanced strength-ductility synergy in Mg-Sn-Al-Zn-Y alloy: Focusing on extrusion process
    He, Xuancheng
    Tang, Wenyu
    Guo, Yuhang
    Zang, Qianhao
    Shi, Fengjian
    Cheng, Ye
    Zhang, Zhenya
    Dong, Xuguang
    JOURNAL OF MANUFACTURING PROCESSES, 2025, 135 : 338 - 358