Investigation of thin Poly-Si/SiOx passivated contacts p-type silicon cells radiation hardness

被引:0
|
作者
Enjalbert, Nicolas [1 ]
Cariou, Romain [1 ]
Dubois, Sebastien [1 ]
机构
[1] Univ Grenoble Alpes, Liten, CEA, Campus INES, Le Bourget Du Lac, France
关键词
Silicon solar cells; Passivated contacts; Poly-Si/SiOx; Electrons irradiations; SOLAR-CELLS; SPACE; DEGRADATION;
D O I
10.1109/ESPC59009.2023.10298128
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Standard satellites photovoltaic arrays (PVA) are powered with III-V multi-junction cells. These cells, three orders of magnitude more expensive than silicon cells, count for about one third of the PVA cost. In parallel, crystalline-silicon (c-Si) modules for the terrestrial market experienced outstanding price reductions, with prices currently around 0.2 _/Wp, and have reached industrial maturity over the last decades. This significant cost gap combined with the huge photovoltaic volume required by the growing Low Earth Orbit (LEO) constellations (orders of magnitude above actual III-V market) call for a re-assessment of Si photovoltaics for space. Within this context, understanding Si radiation hardness through the prism of modern cell materials and passivated contact architectures appears as a key issue. In this work, we focus more precisely on polycrystalline silicon (Poly-Si) on tunnel oxide passivated contacts Si cells (i.e. Poly-Si/SiOx) since they allow premium efficiencies and represent a growing fraction of the terrestrial PV technology share. CEA has developed an innovative cell architecture for terrestrial applications, relying on poly-Si/SiOx stacks integrated on both the front and rear Si wafer surfaces. To avoid parasitic front side light absorption, ultra-thin poly-Si layers (6-15 nm) are used in combination with transparent conductive oxide. Initially developed on thick n-type substrates, the first cells results on p-type Ga-doped wafers, with thicknesses down to 60 mu m and resistivity up to 20 Ohm.cm, are presented here. The radiation hardness of these ultra-thin passivated contacts cells is studied by 1 MeV electrons irradiation.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Edge passivation of shingled poly-Si/SiOx passivated contacts solar cells
    Dhainaut, Franck
    Dabadie, Raoul
    Martel, Benoit
    Desrues, Thibaut
    Albaric, Mickael
    Palais, Olivier
    Dubois, Sebastien
    Harrison, Samuel
    EPJ PHOTOVOLTAICS, 2023, 14
  • [2] The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar
    Feldmann, Frank
    Reichel, Christian
    Mueller, Ralph
    Hermle, Martin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 : 265 - 271
  • [3] An Isotope Study of Hydrogen Passivation of poly-Si/SiOx Passivated Contacts for Si Solar Cells
    Schnabel, Manuel
    Nemeth, William
    van de Loo, Bas W. H.
    Macco, Bart
    Kessels, Wilhelmus M. M.
    Stradins, Paul
    Young, David L.
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 1817 - 1819
  • [4] Hydrogen Passivation Effect on p-Type Poly-Si/SiOx Stack for Crystalline Silicon Solar Cells
    Lozac'h, Mickael
    Nunomura, Shota
    Umishio, Hiroshi
    Matsui, Takuya
    Matsubara, Koji
    9TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2019), 2019, 2147
  • [5] P-type poly-Si/SiOx contact by aluminium-induced crystallization of amorphous silicon
    Sharma, Rajiv
    Szlufcik, Jozef
    Radhakrishnan, Hariharsudan Sivaramakrishnan
    Poortmans, Jef
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 234
  • [6] Investigation of p-Type Silicon Heterojunction Radiation Hardness
    Cariou, Romain
    Danel, Adrien
    Enjalbert, Nicolas
    Jay, Frederic
    Dubois, Sebastien
    IEEE JOURNAL OF PHOTOVOLTAICS, 2024, 14 (01): : 41 - 45
  • [7] Investigation of p-type silicon heterojunction radiation hardness
    Cariou, Romain
    Danel, Adrien
    Enjalbert, Nicolas
    Jay, Frederic
    Dubois, Sebastien
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [8] Dopant Compensation Within the Intrinsic poly-Si Isolation Region in poly-Si/SiOx Passivated IBC Si Solar Cells
    Hartenstein, Matthew B.
    Stetson, Caleb
    Nemeth, William
    Harvey, Steve
    Agarwal, Sumit
    Stradins, Pauls
    11TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2021), 2022, 2487
  • [9] Roles of hydrogen atoms in p-type Poly-Si/SiOx passivation layer for crystalline silicon solar cell applications
    Lozac'h, Mickael
    Nunomura, Shota
    Umishio, Hiroshi
    Matsui, Takuya
    Matsubara, Koji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (05)
  • [10] Front SiON/TCO Stacks Development for Double-Side Poly-Si/SiOX Passivated Contacts Solar Cells
    Seron, Charles
    Desrues, Thibaut
    Denis, Christine
    Cabal, Raphael
    Jay, Frederic
    Lanterne, Adeline
    Rafhay, Quentin
    Kaminski, Anne
    Dubois, Sebastien
    IEEE JOURNAL OF PHOTOVOLTAICS, 2023, 13 (01): : 33 - 39