GALOIS COHOMOLOGY AND COMPONENT GROUP OF A REAL REDUCTIVE GROUP

被引:2
|
作者
Borovoi, Mikhail [1 ]
Timashev, Dmitry A. [2 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
[2] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Higher Algebra, Moscow 119991, Russia
关键词
D O I
10.1007/s11856-023-2526-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive group over the field of real numbers R. Using results of our previous joint paper, we compute combinatorially the first Galois cohomology set H-1 (R, G) in terms of reductive Kac labelings. Moreover, we compute the group of connected components pi(0)G(R) of the real Lie group G(Double-struck capital R) and the maps in exact sequences containing pi(0)G(R) and H-1(R, G).
引用
收藏
页码:937 / 1000
页数:64
相关论文
共 50 条
  • [1] Galois cohomology and component group of a real reductive group
    Mikhail Borovoi
    Dmitry A. Timashev
    Israel Journal of Mathematics, 2024, 259 : 937 - 1000
  • [2] Computing Galois cohomology of a real linear algebraic group
    Borovoi, Mikhail
    de Graaf, Willem A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (05):
  • [3] Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field
    Borovoi, Mikhail
    Rosengarten, Zev
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1401 - 1414
  • [4] THE IMAGE OF THE MAP FROM GROUP COHOMOLOGY TO GALOIS COHOMOLOGY
    Tezuka, M.
    Yagita, N.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (08) : 4475 - 4503
  • [5] Weak Galois cohomology and group extensions
    Stimets, R
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) : 1285 - 1308
  • [6] A short proof of Timashev's theorem on the real component group of a real reductive group
    Borovoi, Mikhail
    Gabber, Ofer
    ARCHIV DER MATHEMATIK, 2023, 120 (01) : 9 - 13
  • [7] A short proof of Timashev’s theorem on the real component group of a real reductive group
    Mikhail Borovoi
    Ofer Gabber
    Archiv der Mathematik, 2023, 120 : 9 - 13
  • [8] Galois cohomology of real quasi-connected reductive groups
    Borovoi, Mikhail
    Gornitskii, Andrei A.
    Rosengarten, Zev
    ARCHIV DER MATHEMATIK, 2022, 118 (01) : 27 - 38
  • [9] Galois cohomology of real quasi-connected reductive groups
    Mikhail Borovoi
    Andrei A. Gornitskii
    Zev Rosengarten
    Archiv der Mathematik, 2022, 118 : 27 - 38
  • [10] INTERSECTION COHOMOLOGY COMPLEXES ON A REDUCTIVE GROUP
    LUSZTIG, G
    INVENTIONES MATHEMATICAE, 1984, 75 (02) : 205 - 272