Memory-Sample Lower Bounds for Learning with Classical-Quantum Hybrid Memory

被引:1
|
作者
Liu, Qipeng [1 ]
Raz, Ran [2 ]
Zhan, Wei [2 ]
机构
[1] Simons Inst Theory Comp, Berkeley, CA 94720 USA
[2] Princeton Univ, Princeton, NJ USA
基金
美国国家科学基金会;
关键词
Learning parity; Quantum lower bounds; Time-space lower bounds; EVERLASTING SECURITY;
D O I
10.1145/3564246.3585129
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a work by Raz (J. ACM and FOCS 16), it was proved that any algorithm for parity learning on n bits requires either Omega(n(2)) bits of classical memory or an exponential number (in n) of random samples. A line of recent works continued that research direction and showed that for a large collection of classical learning tasks, either super-linear classical memory size or super-polynomially many samples are needed. All these works consider learning algorithms as classical branching programs, which perform classical computation within bounded memory. However, these results do not capture all physical computational models, remarkably, quantum computers and the use of quantum memory. It leaves the possibility that a small piece of quantum memory could significantly reduce the need for classical memory or samples and thus completely change the nature of the classical learning task. Despite the recent research on the necessity of quantum memory for intrinsic quantum learning problems like shadow tomography and purity testing, the role of quantum memory in classical learning tasks remains obscure. In this work, we study classical learning tasks in the presence of quantum memory. We prove that any quantum algorithm with both, classical memory and quantum memory, for parity learning on n bits, requires either Omega(n(2)) bits of classical memory or Omega(n) bits of quantum memory or an exponential number of samples. In other words, the memory-sample lower bound for parity learning remains qualitatively the same, even if the learning algorithm can use, in addition to the classical memory, a quantum memory of size cn (for some constant c > 0). Our result is more general and applies to many other classical learning tasks. Following previous works, we represent by the matrix M : A x X -> {-1, 1} the following learning task. An unknown x is sampled uniformly at random from a concept class X, and a learning algorithm tries to uncover x by seeing streaming of random samples (a(i), b(i) = M(a(i), x)) where for every i, a(i) is an element of A is chosen uniformly at random. Assume that k, l, r are integers such that any submatrix of M of at least 2(-k) center dot vertical bar A vertical bar rows and at least 2(-l) center dot vertical bar X vertical bar columns, has a bias of at most 2(-r). We prove that any algorithm with classical and quantum hybrid memory for the learning problem corresponding to M needs either (1) Omega(k center dot l) bits of classical memory, or (2) Omega(r) qubits of quantum memory, or (3) 2(Omega(r)) random samples, to achieve a success probability at least 2(-O(r)). Our results refute the possibility that a small amount of quantum memory significantly reduces the size of classical memory needed for efficient learning on these problems. Our results also imply improved security of several existing cryptographical protocols in the bounded-storage model (protocols that are based on parity learning on n bits), proving that security holds even in the presence of a quantum adversary with at most cn(2) bits of classical memory and cn bits of quantum memory (for some constant c > 0).
引用
收藏
页码:1097 / 1110
页数:14
相关论文
共 50 条
  • [1] Memory-Sample Lower Bounds for LWE
    Lu, Mingqi
    Yang, Junzhao
    ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT V, 2024, 14924 : 158 - 182
  • [3] Hybrid classical-quantum transfer learning for text classification
    Ardeshir-Larijani, Ebrahim
    Nasiri Fatmehsari, Mohammad Mahdi
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [4] Transfer learning in hybrid classical-quantum neural networks
    Mari, Andrea
    Bromley, Thomas R.
    Izaac, Josh
    Schuld, Maria
    Killoran, Nathan
    QUANTUM, 2020, 4
  • [5] Hybrid classical-quantum dynamics
    Peres, A
    Terno, DR
    PHYSICAL REVIEW A, 2001, 63 (02):
  • [6] Semiconductor Defect Detection by Hybrid Classical-Quantum Deep Learning
    Yang, Yuan-Fu
    Sun, Min
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2313 - 2322
  • [7] Memory-Sample Tradeoffs for Linear Regression with Small Error
    Sharan, Vatsal
    Sidford, Aaron
    Valiant, Gregory
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 890 - 901
  • [9] A note on random coding bounds for classical-quantum channels
    M. Dalai
    Problems of Information Transmission, 2017, 53 : 222 - 228
  • [10] Hybrid classical-quantum formulations ask for hybrid notions
    Barcelo, Carlos
    Carballo-Rubio, Raul
    Garay, Luis J.
    Gomez-Escalante, Ricardo
    PHYSICAL REVIEW A, 2012, 86 (04):