Predicting diagnostic biomarkers associated with immune infiltration in Crohn's disease based on machine learning and bioinformatics

被引:9
|
作者
Bao, Wenhui [1 ,2 ]
Wang, Lin [1 ,3 ]
Liu, Xiaoxiao [1 ,4 ]
Li, Ming [2 ]
机构
[1] Tianjin Univ Tradit Chinese Med, Grad Sch, Tianjin, Peoples R China
[2] Tianjin Acad Tradit Chinese Med Affiliated Hosp, Spleen & Gastroenterol, 354 Beima Rd, Tianjin, Peoples R China
[3] Tianjin Univ Tradit Chinese Med, Teaching Hosp 1, Nephrol Dept, Tianjin, Peoples R China
[4] Tianjin Univ Tradit Chinese Med, Teaching Hosp 1, Dept Comprehens Rehabil, Tianjin, Peoples R China
关键词
Machine learning; Immune infiltration; Biomarkers; Crohn's disease; GEO; INFLAMMATORY-BOWEL-DISEASE; ALPHA-DEFENSIN; 6; EXTRAINTESTINAL MANIFESTATIONS; INTESTINAL-MUCOSA; TNF-ALPHA; CELLS; IDENTIFICATION; MECHANISMS; DISABILITY; SECRETION;
D O I
10.1186/s40001-023-01200-9
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
ObjectiveThe objective of this study is to investigate potential biomarkers of Crohn's disease (CD) and the pathological importance of infiltration of associated immune cells in disease development using machine learning.MethodsThree publicly accessible CD gene expression profiles were obtained from the GEO database. Inflammatory tissue samples were selected and differentiated between colonic and ileal tissues. To determine the differentially expressed genes (DEGs) between CD and healthy controls, the larger sample size was merged as a training unit. The function of DEGs was comprehended through disease enrichment (DO) and gene set enrichment analysis (GSEA) on DEGs. Promising biomarkers were identified using the support vector machine-recursive feature elimination and lasso regression models. To further clarify the efficacy of potential biomarkers as diagnostic genes, the area under the ROC curve was observed in the validation group. Additionally, using the CIBERSORT approach, immune cell fractions from CD patients were examined and linked with potential biomarkers.ResultsThirty-four DEGs were identified in colon tissue, of which 26 were up-regulated and 8 were down-regulated. In ileal tissues, 50 up-regulated and 50 down-regulated DEGs were observed. Disease enrichment of colon and ileal DEGs primarily focused on immunity, inflammatory bowel disease, and related pathways. CXCL1, S100A8, REG3A, and DEFA6 in colon tissue and LCN2 and NAT8 in ileum tissue demonstrated excellent diagnostic value and could be employed as CD gene biomarkers using machine learning methods in conjunction with external dataset validation. In comparison to controls, antigen processing and presentation, chemokine signaling pathway, cytokine-cytokine receptor interactions, and natural killer cell-mediated cytotoxicity were activated in colonic tissues. Cytokine-cytokine receptor interactions, NOD-like receptor signaling pathways, and toll-like receptor signaling pathways were activated in ileal tissues. NAT8 was found to be associated with CD8 T cells, while CXCL1, S100A8, REG3A, LCN2, and DEFA6 were associated with neutrophils, indicating that immune cell infiltration in CD is closely connected.ConclusionCXCL1, S100A8, REG3A, and DEFA6 in colonic tissue and LCN2 and NAT8 in ileal tissue can be employed as CD biomarkers. Additionally, immune cell infiltration is crucial for CD development.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Predicting diagnostic biomarkers associated with immune infiltration in Crohn's disease based on machine learning and bioinformatics
    Wenhui Bao
    Lin Wang
    Xiaoxiao Liu
    Ming Li
    European Journal of Medical Research, 28
  • [2] Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in Crohn's disease by integrating bioinformatics and machine learning
    Ren, Xiao-Jun
    Zhang, Man-Ling
    Shi, Zhao-Hong
    Zhu, Pei-Pei
    AUTOIMMUNITY, 2024, 57 (01)
  • [3] Identifying immune cell infiltration and effective diagnostic biomarkers in Crohn's disease by bioinformatics analysis
    Huang, Rong
    Wang, Wenjia
    Chen, Ziyi
    Chai, Jing
    Qi, Qin
    Zheng, Handan
    Chen, Bingli
    Wu, Huangan
    Liu, Huirong
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [4] Combining bioinformatics and machine learning to identify diagnostic biomarkers of TB associated with immune cell infiltration
    Ding, Shoupeng
    Yi, Xiaomei
    Gao, Jinghua
    Huang, Chunxiao
    Zhou, Yuyang
    Yang, Yimei
    Cai, Zihan
    TUBERCULOSIS, 2024, 149
  • [5] Identification of ubiquitination-related key biomarkers and immune infiltration in Crohn's disease by bioinformatics analysis and machine learning
    Chen, Wei
    Xu, Zeyan
    Sun, Haitao
    Feng, Wen
    Huang, Zhenhua
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Novel diagnostic biomarkers related to immune infiltration in Parkinson's disease by bioinformatics analysis
    Zhang, Pengfei
    Zhao, Liwen
    Li, Hongbin
    Shen, Jie
    Li, Hui
    Xing, Yongguo
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [7] Bioinformatics and Machine Learning-Based Identification of Critical Biomarkers and Immune Infiltration in Venous Thromboembolism
    Li, Yajing
    Deng, Hongru
    INTERNATIONAL JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 2024
  • [8] Identification of diagnostic biomarkers correlate with immune infiltration in extra-pulmonary tuberculosis by integrating bioinformatics and machine learning
    Wang, Yanan
    Jin, Faxiang
    Mao, Weifang
    Yu, Yefu
    Xu, Wenfang
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [9] Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in pediatric sepsis by integrating bioinformatics and machine learning
    Wen-Yuan Zhang
    Zhong-Hua Chen
    Xiao-Xia An
    Hui Li
    Hua-Lin Zhang
    Shui-Jing Wu
    Yu-Qian Guo
    Kai Zhang
    Cong-Li Zeng
    Xiang-Ming Fang
    World Journal of Pediatrics, 2023, 19 : 1094 - 1103
  • [10] Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning
    Wang, Jing
    Kang, Zijian
    Liu, Yandong
    Li, Zifu
    Liu, Yang
    Liu, Jianmin
    FRONTIERS IN IMMUNOLOGY, 2022, 13