Microstructure and Properties of Non-Equiatomic Ni10Cr6WFe9TiAlx High-Entropy Alloys Combined with High Strength and Toughness

被引:1
|
作者
Yang, Xigang [1 ]
He, Lin [2 ]
Li, Erhong [2 ]
Yang, Chenglong [2 ]
机构
[1] Xian Technol Univ, Sch Mat Sci & Chem Engn, Xian 710021, Peoples R China
[2] Shanxi North Casting Co Ltd, Datong 037036, Peoples R China
关键词
Ni10Cr6WFe9TiAl high-entropy alloys; non-equiatomic high-entropy alloys; microstructure; mechanical properties; BEHAVIOR; EVOLUTION;
D O I
10.3390/met13071179
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) with excellent mechanical properties have broad application scope and application prospects. However, it is difficult to obtain the optimized element composition, based on the traditional equiatomic or near-equiatomic statistical analysis of the phase selection rules. The non-equiatomic HEAs have abundant constituents combination by optimizing the type and content of elements. In this study, Ni(10)Cr(6)WFe(9)TiAlx (x = 0, 1.0 and 1.5, at.%) HEAs were prepared by vacuum arc melting. The effect of Al content x on microstructure and mechanical properties of HEAs was systematically studied. The results show that the HEAs are composed mainly of face-centered cubic (FCC) with hexagonal Al2W phase. The increase of Al content promotes the formation of the hexagonal Al2W phase. When the Al mole content is 1.0, the Ni10Cr6WFe9TiAl HEA material has achieved superior mechanical properties. The alloy exhibited a high ultimate tensile strength of 741 MPa and a large total elongation of 46%. The improvement in the mechanical properties of the Ni10Cr6WFe9TiAl HEA is mainly attributed to the precipitation strengthening of the high-density Al2W phase. This work provides a reference for the future design of Al2W precipitation-strengthened non-equiatomic HEAs with ideal properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties
    Zhiming Li
    Dierk Raabe
    JOM, 2017, 69 : 2099 - 2106
  • [2] Microstructure and mechanical properties of (FeCoNiCr)100-xMnx non-equiatomic high-entropy alloys
    Zhao K.
    Ai T.-T.
    Feng X.-M.
    Wang P.-J.
    Bao W.-W.
    Li W.-H.
    Kou L.-J.
    Dong H.-F.
    Zou X.-Y.
    Deng Z.-F.
    Zhao Z.-G.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2022, 32 (05): : 1351 - 1359
  • [3] Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties
    Li, Zhiming
    Raabe, Dierk
    JOM, 2017, 69 (11) : 2099 - 2106
  • [4] Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination
    Liu, D.
    Jin, X.
    Guo, N.
    Liaw, P. K.
    Qiao, J. W.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 818
  • [5] Designing the composition and optimizing the mechanical properties of non-equiatomic FeCoNiTi high-entropy alloys
    Li, Wei
    Gao, Qing
    Ren, Junqiang
    Wang, Qi
    Li, Junchen
    Xue, Hongtao
    Lu, Xuefeng
    Tang, Fuling
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 376 - 385
  • [6] Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials
    Nagase, Takeshi
    Todai, Mitsuharu
    Hori, Takao
    Nakano, Takayoshi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 753 : 412 - 421
  • [7] Dynamic response of equiatomic and non-equiatomic CrMnFeCoNi high-entropy alloys under plate impact
    Zhang, N. B.
    Cai, Y.
    Bian, Y. L.
    Ran, X. X.
    Wang, Q. K.
    Lei, Y. Z.
    Zhao, X. J.
    Lu, L.
    Lu, S. N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [8] A high-density non-equiatomic WTaMoNbV high-entropy alloy: Alloying behavior, microstructure and mechanical properties
    Hu, Xin
    Liu, Xinli
    Yan, Dingshun
    Li, Zhiming
    Journal of Alloys and Compounds, 2022, 894
  • [9] A high-density non-equiatomic WTaMoNbV high-entropy alloy: Alloying behavior, microstructure and mechanical properties
    Hu, Xin
    Liu, Xinli
    Yan, Dingshun
    Li, Zhiming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 894
  • [10] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF EQUIATOMIC AND NON-EQUIATOMIC TiMoTaNbV HIGH ENTROPY ALLOYS PREPARED USING VACUUM ARC REMELTING
    Lee, Seongi
    Lee, Kwangmin
    ARCHIVES OF METALLURGY AND MATERIALS, 2020, 65 (04) : 1311 - 1315