A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models

被引:25
|
作者
Faure, Leon [1 ]
Mollet, Bastien [2 ,3 ]
Liebermeister, Wolfram [4 ]
Faulon, Jean-Loup [1 ,5 ]
机构
[1] Univ Paris Saclay, MICALIS Inst, INRAE, AgroParisTech, F-78350 Jouy En Josas, France
[2] Ecole Normale Super Lyon, F-69342 Lyon, France
[3] Univ Paris Saclay, UMR MIA, INRAE, AgroParisTech, F-91120 Palaiseau, France
[4] Univ Paris Saclay, MaIAGE, INRAE, F-78350 Jouy En Josas, France
[5] Univ Manchester, Manchester Inst Biotechnol, Manchester M1 7DN, England
关键词
ESCHERICHIA-COLI; RESOURCE-ALLOCATION; NETWORKS; OPTIMIZATION;
D O I
10.1038/s41467-023-40380-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constraint-based metabolic models have been used for decades to predict the phenotype of microorganisms in different environments. However, quantitative predictions are limited unless labor-intensive measurements of media uptake fluxes are performed. We show how hybrid neural-mechanistic models can serve as an architecture for machine learning providing a way to improve phenotype predictions. We illustrate our hybrid models with growth rate predictions of Escherichia coli and Pseudomonas putida grown in different media and with phenotype predictions of gene knocked-out Escherichia coli mutants. Our neural-mechanistic models systematically outperform constraint-based models and require training set sizes orders of magnitude smaller than classical machine learning methods. Our hybrid approach opens a doorway to enhancing constraint-based modeling: instead of constraining mechanistic models with additional experimental measurements, our hybrid models grasp the power of machine learning while fulfilling mechanistic constrains, thus saving time and resources in typical systems biology or biological engineering projects.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models
    Léon Faure
    Bastien Mollet
    Wolfram Liebermeister
    Jean-Loup Faulon
    Nature Communications, 14
  • [2] Improving genome-scale metabolic models of incomplete genomes with deep learning
    Boer, Meine D.
    Melkonian, Chrats
    Zafeiropoulos, Haris
    Haas, Andreas F.
    Garza, Daniel R.
    Dutilh, Bas E.
    ISCIENCE, 2024, 27 (12)
  • [3] Building and analysing genome-scale metabolic models
    Fell, David A.
    Poolman, Mark G.
    Gevorgyan, Albert
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2010, 38 : 1197 - 1201
  • [4] Genome-scale metabolic models for hepatocellular carcinoma
    Pinyol, Roser
    Llovet, Josep M.
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2014, 11 (06) : 336 - 337
  • [5] Automation on the Generation of Genome-Scale Metabolic Models
    Reyes, R.
    Gamermann, D.
    Montagud, A.
    Fuente, D.
    Triana, J.
    Urchueguia, J. F.
    Fernandez de Cordoba, P.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (12) : 1295 - 1306
  • [6] Distance metrics for genome-scale metabolic models
    Cabbia, Andrea
    Hilbers, Peter A.J.
    van Riel, Natal A.W.
    Research Square, 2019,
  • [7] Reconstructing genome-scale metabolic models with merlin
    Dias, Oscar
    Rocha, Miguel
    Ferreira, Eugenio C.
    Rocha, Isabel
    NUCLEIC ACIDS RESEARCH, 2015, 43 (08) : 3899 - 3910
  • [8] Genome-scale metabolic models for hepatocellular carcinoma
    Roser Pinyol
    Josep M. Llovet
    Nature Reviews Gastroenterology & Hepatology, 2014, 11 : 336 - 337
  • [9] Improving the genome-scale metabolic network of Arabidopsis thaliana
    Christian, Nils
    Ebenhoh, Oliver
    May, Patrick
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153A (02): : S227 - S228
  • [10] Comparison of metabolic states using genome-scale metabolic models
    Sarathy, Chaitra
    Breuer, Marian
    Kutmon, Martina
    Adriaens, Michiel E.
    Evelo, Chris T.
    Arts, Ilja C. W.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)