MULTIPLE NORMALIZED SOLUTIONS FOR A QUASI-LINEAR SCHRODINGER EQUATION VIA DUAL APPROACH

被引:1
|
作者
Zhang, Lin [1 ]
Li, Yongqing [1 ]
Wang, Zhi-qiang [1 ,2 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fujian 350000, Peoples R China
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
基金
中国国家自然科学基金;
关键词
Quasi-linear Schrodinger equations; normalized solutions; dual method; the minimax principle; SCALAR FIELD-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; STANDING WAVES; EXISTENCE; STABILITY; CALCULUS;
D O I
10.12775/TMNA.2022.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct multiple normalized solutions of the following from quasi-linear Schrodinger equation: -Delta u - Delta(|u|(2))u- mu u = |u|(p-2)u, in R-N, subject to a mass-sub critical constraint. In order to overcome non-smoothness of the associated variational formulation we make use of the dual approach. The constructed solutions possess energies being clustered at 0 level which makes it difficult to use existing methods for non-smooth variational problems such as the variational perturbation approach.
引用
收藏
页码:465 / 489
页数:25
相关论文
共 50 条
  • [1] Multiple normalized solutions for quasi-linear Schrodinger equations
    Jeanjean, Louis
    Luo, Tingjian
    Wang, Zhi-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 3894 - 3928
  • [2] A quasi-linear Schrodinger equation with indefinite potential
    Maia, L. A.
    Oliveira Junior, J. C.
    Ruviaro, R.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (04) : 574 - 586
  • [3] EQUICONTINUITY OF SOLUTIONS OF A QUASI-LINEAR EQUATION
    BOHN, SE
    PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) : 1193 - &
  • [4] SIMILARITY SOLUTIONS FOR A QUASI-LINEAR PARABOLIC EQUATION
    GUO, JS
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1995, 37 : 253 - 266
  • [5] Multiple normalized solutions for a Sobolev critical Schrodinger equation
    Jeanjean, Louis
    Thanh Trung Le
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 101 - 134
  • [6] ON THE MOUNTAIN-PASS ALGORITHM FOR THE QUASI-LINEAR SCHRODINGER EQUATION
    Grumiau, Christopher
    Squassina, Marco
    Troestler, Christophe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (05): : 1345 - 1360
  • [7] The initial value problem for the general quasi-linear Schrodinger equation
    Kenig, C. E.
    Ponce, G.
    Vega, L.
    RECENT DEVELOPMENTS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 439 : 101 - +
  • [8] ASYMPTOTICAL BEHAVIOR OF SOLUTIONS TO QUASI-LINEAR SCHRODINGER-EQUATIONS
    LANGE, H
    DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 411 - 421
  • [9] Stationary solutions of quasi-linear Schrodinger-Poisson systems
    Illner, R
    Kavian, O
    Lange, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (01) : 1 - 16
  • [10] On the equivalence of viscosity solutions and weak solutions or a quasi-linear equation
    Juutinen, P
    Lindqvist, P
    Manfredi, JJ
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 699 - 717