Global Atmospheric Composition Observations

被引:2
|
作者
Carmichael, Gregory R. [1 ,2 ]
Tarasova, Oksana [3 ]
Hov, Oystein [4 ,8 ]
Barrie, Leonard [5 ,6 ,9 ,10 ]
Butler, James H. [7 ,11 ,12 ,13 ,14 ]
机构
[1] WMO, Environm Pollut & Atmospher Chem Sci Steering Comm, Geneva, Switzerland
[2] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA
[3] WMO, Infrastruct Dept, Geneva, Switzerland
[4] Norwegian Meteorol Inst, Oslo, Norway
[5] McGill Univ, Atmospher & Ocean Sci Dept, Montreal, PQ, Canada
[6] Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden
[7] NOAA Global Monitoring Lab, Boulder, CO USA
[8] WMO, Commiss Atmospher Sci, Geneva, Switzerland
[9] WMO, Sci & Innovat Dept, Atmospher Environm Res Div, Geneva, Switzerland
[10] Cyprus Inst, Nicosia, Cyprus
[11] Commiss Atmospher Sci Execut Council, Geneva, Switzerland
[12] In Serv Aircraft Global Observing Syst, Advisory Board, Brussels, Belgium
[13] Integrated Carbon Observat Syst, Sci Advisory Board, Helsinki, Finland
[14] WMO, Atmospher Observat Panel Climate, GCOS, Geneva, Switzerland
关键词
Atmosphere; Air quality; Atmosphere-land interaction; Biosphere-atmosphere interaction; In situ atmospheric observations; Remote sensing;
D O I
10.1175/BAMS-D-22-0016.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Further long-term investments in high-quality, research-driven, fit-for-purpose observations of atmospheric composition are needed globally to meet urgent societal needs related to weather, climate, air quality, and other environmental issues. Challenges include maintaining current observing systems in the face of eroding budgets for long-term monitoring and filling the geographical gaps for key constituents needed for sound services and policies. The observing systems can be bolstered through science-for-services applications, by embracing interoperable observation systems and standardized metadata, and ensuring that the data are findable, accessible, interoperable, and reusable. There is an urgent need to move from opportunities-driven one-component observations to more systematic, planned multifunctional infrastructure, where the observational data flow is coupled with Earth system models to serve both operational and research purposes. This approach fosters a community where user experience feeds back into the research components and where mature research results are translated into operational applications. This will lead to faster exploration and exploitation of atmospheric composition information and more impactful applications for science and society. We discuss here the urgent need to (i) achieve global coverage, (ii) harmonize infrastructure operations, (iii) establish focused policies, and (iv) strengthen coordination of atmospheric composition infrastructure.
引用
收藏
页码:E666 / E672
页数:7
相关论文
共 50 条
  • [1] Composition of Atmospheric Aerosols as the Global Invariant
    Kardanov, S. Z.
    [J]. CHEMISTRY FOR SUSTAINABLE DEVELOPMENT, 2014, 22 (03): : 279 - 284
  • [2] Global atmospheric composition, weather, and climate
    Ramaswamy, Venkatachalam
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [3] Conference on Global Measurement Systems for Atmospheric Composition
    Drummond, JR
    Douglass, A
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1999, 56 (02) : 125 - 126
  • [4] THE IMPACT OF OBSERVED CHANGES IN ATMOSPHERIC COMPOSITION ON GLOBAL ATMOSPHERIC CHEMISTRY AND CLIMATE
    CRUTZEN, PJ
    BRUHL, C
    [J]. ENVIRONMENTAL RECORD IN GLACIERS AND ICE SHEETS, 1989, 8 : 249 - 266
  • [5] Observations of the Atmospheric Composition over Russia: TROICA Experiments
    N. F. Elansky
    G. S. Golitsyn
    P. J. Crutzen
    I. B. Belikov
    C. A. M. Brenninkmeijer
    A. I. Skorokhod
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2021, 57 : 72 - 90
  • [6] Special Issue Atmospheric Composition and Cloud Cover Observations
    Voiculescu, Mirela
    [J]. ATMOSPHERE, 2021, 12 (01)
  • [7] Observations of the Atmospheric Composition over Russia: TROICA Experiments
    Elansky, N. F.
    Golitsyn, G. S.
    Crutzen, P. J.
    Belikov, I. B.
    Brenninkmeijer, C. A. M.
    Skorokhod, A. I.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2021, 57 (01) : 72 - 90
  • [8] Global budget of methanol: Constraints from atmospheric observations
    Jacob, DJ
    Field, BD
    Li, QB
    Blake, DR
    de Gouw, J
    Warneke, C
    Hansel, A
    Wisthaler, A
    Singh, HB
    Guenther, A
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D8) : 1 - 17
  • [9] First global observations of atmospheric COClF from the Atmospheric Chemistry Experiment mission
    Fu, Dejian
    Boone, Chris D.
    Bernath, Peter F.
    Weisenstein, Debra K.
    Rinsland, Curtis P.
    Manney, Gloria L.
    Walker, Kaley A.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (12): : 974 - 985
  • [10] THE GLOBAL PICTURE OF THE ATMOSPHERIC COMPOSITION PROVIDED BY MIPAS ON ENVISAT
    Carli, B.
    Aubertin, G.
    Birk, M.
    Carlotti, M.
    Castelli, E.
    Ceccherini, S.
    D'Alba, L.
    Dehn, A.
    De laurentis, M.
    Dinelli, B. M.
    Dudhia, A.
    Fehr, T.
    Fischer, H.
    Flaud, J. -M.
    Funke, B.
    Gessner, R.
    Hoepfner, M.
    Kiefer, M.
    Lopez-Puertas, M.
    Oelhaf, H.
    Perron, G.
    Kleinert, A.
    Mosner, P.
    Niro, F.
    Raspollini, P.
    Remedios, J.
    Ridolfi, M.
    Sembhi, H.
    Sgheri, L.
    von Clarmann, T.
    Wagner, G.
    Weber, H.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1860 - 1863