Derandomised knockoffs: leveraging e-values for false discovery rate control

被引:11
|
作者
Ren, Zhimei [1 ]
Barber, Rina Foygel [2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
[2] Univ Chicago, Dept Stat, Chicago, IL USA
基金
美国国家科学基金会;
关键词
false discovery rate; knockoffs; multiple hypothesis testing; stability; variable selection;
D O I
10.1093/jrsssb/qkad085
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Model-X knockoffs is a flexible wrapper method for high-dimensional regression algorithms, which provides guaranteed control of the false discovery rate (FDR). Due to the randomness inherent to the method, different runs of model-X knockoffs on the same dataset often result in different sets of selected variables, which is undesirable in practice. In this article, we introduce a methodology for derandomising model-X knockoffs with provable FDR control. The key insight of our proposed method lies in the discovery that the knockoffs procedure is in essence an e-BH procedure. We make use of this connection and derandomise model-X knockoffs by aggregating the e-values resulting from multiple knockoff realisations. We prove that the derandomised procedure controls the FDR at the desired level, without any additional conditions (in contrast, previously proposed methods for derandomisation are not able to guarantee FDR control). The proposed method is evaluated with numerical experiments, where we find that the derandomised procedure achieves comparable power and dramatically decreased selection variability when compared with model-X knockoffs.
引用
收藏
页码:122 / 154
页数:33
相关论文
共 50 条
  • [1] False discovery rate control with e-values
    Wang, Ruodu
    Ramdas, Aaditya
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (03) : 822 - 852
  • [2] Derandomized Truncated D-vine Copula Knockoffs with e-values to control the false discovery rate
    Vasquez, Alejandro Roman
    Urbina, Jose Ulises Marquez
    Farias, Graciela Gonzalez
    Escarela, Gabriel
    COMPUTATIONAL STATISTICS, 2025,
  • [3] CONTROLLING THE FALSE DISCOVERY RATE VIA KNOCKOFFS
    Barber, Rina Foygel
    Candes, Emmanuel J.
    ANNALS OF STATISTICS, 2015, 43 (05): : 2055 - 2085
  • [4] False Discovery Rate Control in Cancer Biomarker Selection Using Knockoffs
    Shen, Arlina
    Fu, Han
    He, Kevin
    Jiang, Hui
    CANCERS, 2019, 11 (06):
  • [5] False Discovery Proportion control for aggregated Knockoffs
    Blain, Alexandre
    Thirion, Bertrand
    Grisel, Olivier
    Neuvial, Pierre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Aggregating Knockoffs for False Discovery Rate Control with an Application to Gut Microbiome Data
    Xie, Fang
    Lederer, Johannes
    ENTROPY, 2021, 23 (02) : 1 - 14
  • [7] True and false discoveries with independent and sequential e-values
    Vovk, Vladimir
    Wang, Ruodu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (04):
  • [8] Controlling the false discovery rate in transformational sparsity: Split Knockoffs
    Cao, Yang
    Sun, Xinwei
    Yao, Yuan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 86 (02) : 386 - 410
  • [9] Controlling the false discovery rate in sparse VHAR models using knockoffs
    Parka, Minsu
    Leea, Jaewon
    Baek, Changryong
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (06) : 685 - 701
  • [10] Split Knockoffs for Multiple Comparisons: Controlling the Directional False Discovery Rate
    Cao, Yang
    Sun, Xinwei
    Yao, Yuan
    arXiv, 2023,