An intrinsic ductility parameter derived from anisotropic linear elasticity theory

被引:0
|
作者
Winter, I. S. [1 ]
Hardin, T. J. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
CRACK-TIP; INTERATOMIC POTENTIALS; DISLOCATION EMISSION; DEFORMATION; TEMPERATURE; MECHANISMS; CONSTANTS; FE; PLASTICITY; STABILITY;
D O I
10.1016/j.scriptamat.2023.115950
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new indicator of intrinsic ductility (x) is introduced based on linear elasticity. In the limit of elastic isotropy this parameter is equal to the Pugh ratio (BIG) plus a constant; but unlike the Pugh ratio, x incorporates anisotropy and crystallography to improve predictive value. We identify a single ductile-to-brittle transition setpoint for x that predicts crack-tip plasticity in atomistic simulations, experimental elongation to failure of polycrystalline elemental metals pulled in tension, and fracture energy measurements of glasses, suggesting commonality in the relationship between plasticity and fracture across all three of these cases. Statistical analysis supports the superiority of x over BIG at predicting crack-tip plasticity in atomistic simulations and elongation to failure of polycrystalline elemental metals.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Intrinsic ductility of random substitutional alloys from nonlinear elasticity theory
    Winter, I. S.
    de Jong, M.
    Montoya, J.
    Rothchild, E.
    Chrzan, D. C.
    PHYSICAL REVIEW MATERIALS, 2019, 3 (11):
  • [2] Version of the linear elasticity theory with a structural parameter
    Revuzhenko, A. F.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2016, 57 (05) : 801 - 807
  • [3] Version of the linear elasticity theory with a structural parameter
    A. F. Revuzhenko
    Journal of Applied Mechanics and Technical Physics, 2016, 57 : 801 - 807
  • [4] Linear transformations for the plane problem of anisotropic theory of elasticity
    Kulikov, A.A.
    Nazarov, S.A.
    Narbut, M.A.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 2000, (02): : 91 - 95
  • [5] Anisotropic symmetries of linear elasticity
    Cowin, S.C.
    Mehrabadi, M.M.
    Applied Mechanics Reviews, 1995, 48 (05): : 247 - 285
  • [6] Splitting of Initial Boundary Value Problems in Anisotropic Linear Elasticity Theory
    M. U. Nikabadze
    Moscow University Mechanics Bulletin, 2019, 74 : 103 - 110
  • [7] Splitting of Initial Boundary Value Problems in Anisotropic Linear Elasticity Theory
    Nikabadze, M. U.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2019, 74 (05) : 103 - 110
  • [8] On the Theory of Anisotropic Flat Elasticity
    Soldatov A.P.
    Journal of Mathematical Sciences, 2018, 235 (4) : 484 - 535
  • [9] Laminations in planar anisotropic linear elasticity
    Gutiérrez, S
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2004, 57 : 571 - 582
  • [10] The relaxed structure of intrinsic dislocation networks in semicoherent interfaces: predictions from anisotropic elasticity theory and comparison with atomistic simulations
    Vattre, A.
    Abdolrahim, N.
    Navale, S. S.
    Demkowicz, M. J.
    EXTREME MECHANICS LETTERS, 2019, 28 : 50 - 57