Defect engineered efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in ethanol by Co-doped LaMnO3

被引:12
|
作者
Yang, Hui [1 ,4 ]
Chen, Hao [3 ]
Zhou, Wenhua [1 ,2 ]
Fan, Haoan [1 ,2 ]
Chen, Chao [1 ,2 ]
Li, Jing [1 ]
Li, Bolong [1 ,2 ]
Wang, Jianghao [1 ,2 ]
Fu, Jie [1 ,2 ]
机构
[1] Zhejiang Univ, Minist Educ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Inst Zhejiang Univ Quzhou, Quzhou 324000, Zhejiang, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
[4] Beibu Gulf Univ, Coll Petr & Chem Engn, Guangxi Key Lab Green Chem Mat & Safety Technol, Qinzhou 535000, Guangxi, Peoples R China
关键词
Perovskite; Co doping; Oxygen defects; Catalytic transfer hydrogenation; Furfural; OXYGEN-VACANCY; PEROVSKITE OXIDES; CONVERSION; DEGRADATION; TRANSITION; OXIDATION; BIOMASS; FACILE;
D O I
10.1016/j.fuel.2023.129388
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As energy and CO2 concerns have become important aspects of scientific research, researchers are focusing on the development of alternative and green energies. Biomass is a significant energy source due to its cyclic utilization process and ability to renew CO2. The catalytic transfer hydrogenation (CTH) of sugar-derived furfural (FF) into furfuryl alcohol (FA) has attracted increasing attention; however, designing and synthesizing efficient nonnoble catalysts remains challenging. In this work, an oxygen defect-abundant LaMnO3 perovskite (R-LM4C-3h) was synthesized by combining the advantages of both Co heteroatom doping and H2 reduction. Raman, O2 temperature programmed desorption (O2-TPD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and electrochemical impedance spectroscopy (EIS) characterizations revealed that R-LM4C-3h exhibited abundant oxygen defects that improved its electronic properties. As a result, adsorption ability for FF was enhanced, the reaction energy barrier was decreased, and CTH catalytic activity was promoted. A 93.6 mol% FA yield with 100 % FF conversion was achieved using ethanol as the hydrogen source. The oxygen defect mediated catalyst also exhibited excellent stability with almost no activity reduction after 5 cycles. This surface reconstruction strategy for obtaining perovskites by fabricating abundant oxygen defects provides a superior opportunity to better explore the structure-function relationship of catalysts and develop efficient nonnoble metal-based catalysts.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol
    Fan, Yafei
    Zhuang, Changfu
    Li, Shangjing
    Wang, Ying
    Zou, Xiaoqin
    Liu, Xiaoteng
    Huang, Weimin
    Zhu, Guangshan
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) : 1110 - 1118
  • [2] Catalytic transfer hydrogenation of biomass-derived furfural into furfuryl alcohol over zirconium doped nanofiber
    Lin, Wansi
    Cheng, Yuan
    Liu, Huai
    Zhang, Junhua
    Peng, Lincai
    FUEL, 2023, 331
  • [3] Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites
    Maderuelo-Solera, R.
    Lopez-Asensio, R.
    Cecilia, J. A.
    Jimenez-Gomez, C. P.
    Garcia-Sancho, C.
    Moreno-Tost, R.
    Maireles-Torres, P.
    APPLIED CLAY SCIENCE, 2019, 183
  • [4] Boron doped magnetic catalysts for selective transfer hydrogenation of furfural into furfuryl alcohol
    Li, Danni
    Zhang, Jun
    Liu, Ying
    Yuan, Haoran
    Chen, Yong
    CHEMICAL ENGINEERING SCIENCE, 2021, 229
  • [5] Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts
    An, Zhidong
    Li, Jiang
    GREEN CHEMISTRY, 2022, 24 (05) : 1780 - 1808
  • [6] Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Al-containing ferrihydrite
    Chen, Wenhai
    Peng, Qiao
    Fan, Guozhi
    Cheng, Qunpeng
    Tu, Min
    Song, Guangsen
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 119 : 574 - 585
  • [7] Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts
    Li, Jiang
    Liu, Jun-ling
    Zhou, Hong-jun
    Fu, Yao
    CHEMSUSCHEM, 2016, 9 (11) : 1339 - 1347
  • [8] Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids
    Li, Hu
    Li, Yan
    Fang, Zhen
    Smith, Richard L., Jr.
    CATALYSIS TODAY, 2019, 319 : 84 - 92
  • [9] Glucose-derived zirconium-containing mesoporous composite for efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol
    Yang, Jirui
    Zhang, Yanwei
    Shen, Feng
    Qi, Xinhua
    BIOMASS & BIOENERGY, 2023, 170
  • [10] Efficient Cu-Co bimetallic catalysts for the selective hydrogenation of furfural to furfuryl alcohol
    Zhao, Hao
    Liao, Xiaoqing
    Cui, Haishuai
    Zhu, Meichen
    Hao, Fang
    Xiong, Wei
    Luo, Hean
    Lv, Yang
    Liu, Pingle
    FUEL, 2023, 351