Multi-omics analysis identifies drivers of protein phosphorylation

被引:3
|
作者
Zhang, Tian [1 ]
Keele, Gregory R. [2 ]
Gyuricza, Isabela Gerdes [2 ]
Vincent, Matthew [2 ]
Brunton, Catherine [2 ]
Bell, Timothy A. [3 ]
Hock, Pablo [3 ]
Shaw, Ginger D. [3 ]
Munger, Steven C. [2 ]
de Villena, Fernando Pardo-Manuel [3 ,4 ]
Ferris, Martin T. [3 ]
Paulo, Joao A. [1 ]
Gygi, Steven P. [1 ]
Churchill, Gary A. [2 ]
机构
[1] Harvard Med Sch, Boston, MA 02115 USA
[2] Jackson Lab, Bar Harbor, ME 04609 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Collaborative Cross; Phosphorylation; Quantitative trait loci (QTL); Multi-omics; Medation analysis; Phosphorylation regulation; PROPIONYL-COA CARBOXYLASE; TRANSCRIPTIONAL REGULATION; COLLABORATIVE CROSS; SUBSPECIFIC ORIGIN; GENETIC-VARIATION; LUNG-CANCER; CELL-CYCLE; KINASE; MODEL; RECEPTOR;
D O I
10.1186/s13059-023-02892-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundPhosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated.ResultsWe quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped similar to 700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes.ConclusionsTogether, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Multi-omics analysis identifies drivers of protein phosphorylation
    Tian Zhang
    Gregory R. Keele
    Isabela Gerdes Gyuricza
    Matthew Vincent
    Catherine Brunton
    Timothy A. Bell
    Pablo Hock
    Ginger D. Shaw
    Steven C. Munger
    Fernando Pardo-Manuel de Villena
    Martin T. Ferris
    Joao A. Paulo
    Steven P. Gygi
    Gary A. Churchill
    Genome Biology, 24
  • [2] Integrated multi-omics analysis of Huntington disease identifies pathways that modulate protein aggregation
    Pradhan, Sai S.
    Thota, Sai M.
    Rajaratnam, Saiswaroop
    Bhagavatham, Sai K. S.
    Pulukool, Sujith K.
    Rathnakumar, Sriram
    Phalguna, Kanikaram S.
    Dandamudi, Rajesh B.
    Pargaonkar, Ashish
    Joseph, Prasanth
    Joshy, E., V
    Sivaramakrishnan, Venketesh
    DISEASE MODELS & MECHANISMS, 2022, 15 (10)
  • [3] Multi-Omics Identifies Circulating miRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy
    Heier, Christopher R.
    Zhang, Aiping
    Nguyen, Nhu Y.
    Tully, Christopher B.
    Panigrahi, Aswini
    Gordish-Dressman, Heather
    Pandey, Sachchida Nand
    Guglieri, Michela
    Ryan, Monique M.
    Clemens, Paula R.
    Thangarajh, Mathula
    Webster, Richard
    Smith, Edward C.
    Connolly, Anne M.
    McDonald, Craig M.
    Karachunski, Peter
    Tulinius, Mar
    Harper, Amy
    Mah, Jean K.
    Fiorillo, Alyson A.
    Chen, Yi-Wen
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 22
  • [4] An integrated multi-omics analysis identifies protein biomarkers and potential drug targets for psoriatic arthritis
    Yi-Xin Cai
    Dai-Shan Zheng
    Xiao-Li Chen
    Zhan-Pei Bai
    Jinyi Zhang
    Wenhai Deng
    Xiu-Feng Huang
    Communications Biology, 8 (1)
  • [5] Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers
    Demir Karaman, Ezgi
    Isik, Zerrin
    MEDICAL SCIENCES, 2023, 11 (03)
  • [6] Multi-omics analysis identifies novels genes involved in glioma prognosis
    Yingjie Li
    Hong Sun
    Scientific Reports, 15 (1)
  • [7] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [8] Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long
    Wang, Kaiming
    Khoramjoo, Mobin
    Srinivasan, Karthik
    Gordon, Paul M. K.
    Mandal, Rupasri
    Jackson, Dana
    Sligl, Wendy
    Grant, Maria B.
    Penninger, Josef M.
    Borchers, Christoph H.
    Wishart, David S.
    Prasad, Vinay
    Oudit, Gavin Y.
    CELL REPORTS MEDICINE, 2023, 4 (11)
  • [9] Multi-omics analysis identifies OSGEPL1 as an oncogene in hepatocellular carcinoma
    Sintim Mui
    Juanyi Shi
    Kai Wen
    Yongcong Yan
    Huoming Li
    Weidong Wang
    Zhenyu Zhou
    Zhiyu Xiao
    Discover Oncology, 16 (1)
  • [10] MULTI-OMICS ANALYSIS OF SYNOVIAL FLUID IDENTIFIES FOUR DISTINCT SUBTYPES OF OSTEOARTHRITIS
    Liu, Xiyu
    Lv, Zhongyang
    Shi, Dongquan
    OSTEOARTHRITIS AND CARTILAGE, 2024, 32 : S467 - S467