Logistic regression versus XGBoost for detecting burned areas using satellite images

被引:1
|
作者
Militino, A. F. [1 ,2 ]
Goyena, H. [1 ,2 ]
Perez-Goya, U. [1 ,2 ]
Ugarte, M. D. [1 ,2 ]
机构
[1] Publ Univ Navarre UPNA, Dept Stat Comp Sci & Math, Arrosadia Campus, Pamplona 31006, Spain
[2] Univ Publ Navarra, Inst Adv Mat & Math InaMat2, Campus Arrosadia, Pamplona 31006, Navarre, Spain
关键词
Commission error; LR; Machine learning; MODIS; Omission error; Spectral indices; VIIRS; XGBoost; RANDOM FOREST; ALGORITHM; FIRES; CLASSIFICATION; SEVERITY; ACCURACY; INDEXES; RED;
D O I
10.1007/s10651-023-00590-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Classical statistical methods prove advantageous for small datasets, whereas machine learning algorithms can excel with larger datasets. Our paper challenges this conventional wisdom by addressing a highly significant problem: the identification of burned areas through satellite imagery, that is a clear example of imbalanced data. The methods are illustrated in the North-Central Portugal and the North-West of Spain in October 2017 within a multi-temporal setting of satellite imagery. Daily satellite images are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Our analysis shows that a classical Logistic regression (LR) model competes on par, if not surpasses, a widely employed machine learning algorithm called the extreme gradient boosting algorithm (XGBoost) within this particular domain.
引用
收藏
页码:57 / 77
页数:21
相关论文
共 50 条
  • [1] Logistic regression versus XGBoost for detecting burned areas using satellite images
    A. F. Militino
    H. Goyena
    U. Pérez-Goya
    M. D. Ugarte
    Environmental and Ecological Statistics, 2024, 31 : 57 - 77
  • [2] Evaluation of wildfire propagation susceptibility in grasslands using burned areas and multivariate logistic regression
    Cao, Xin
    Cui, Xihong
    Yue, Miao
    Chen, Jin
    Tanikawa, Hiroki
    Ye, Yu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (19) : 6679 - 6700
  • [3] Predicting Motor Insurance Claims Using Telematics Data-XGBoost versus Logistic Regression
    Pesantez-Narvaez, Jessica
    Guillen, Montserrat
    Alcaniz, Manuela
    RISKS, 2019, 7 (02)
  • [4] Detecting Regular Plantation Areas in Satellite Images
    Yalniz, Ismet Zeki
    Aksoy, Selim
    2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 531 - 534
  • [5] Detecting Areas Vulnerable to Flooding Using Hydrological-Topographic Factors and Logistic Regression
    Lee, Jae-Yeong
    Kim, Ji-Sung
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [6] Logistic regression model for detecting radon prone areas in Ireland
    Elio, J.
    Crowley, Q.
    Scanlon, R.
    Hodgson, J.
    Long, S.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 599 : 1317 - 1329
  • [7] A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images
    Pinto, Miguel M.
    Libonati, Renata
    Trigo, Ricardo M.
    Trigo, Isabel F.
    DaCamara, Carlos C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 160 : 260 - 274
  • [8] SEMANTIC SEGMENTATION OF BURNED AREAS IN SENTINEL-2 SATELLITE IMAGES USING DEEP LEARNING MODELS
    Ouadou, Anes
    Huangal, David
    Hurt, J. Alex
    Scott, Grant J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6366 - 6369
  • [9] LOGISTIC REGRESSION FOR DETECTING CHANGES BETWEEN DATABASES AND REMOTE SENSING IMAGES
    Chabert, M.
    Tourneret, J. -Y.
    Poulain, V.
    Inglada, J.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3198 - 3201
  • [10] “ADJUSTING A PROGNOSTIC SCORE FOR BURNED CHILDREN BY USING LOGISTIC REGRESSION” 7
    Demirdjian G.
    Pediatric Research, 1997, 41 (1) : 154 - 154