Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells

被引:24
|
作者
Zhang, Jing [1 ]
Mcgettrick, James [2 ]
Ji, Kangyu [3 ]
Bi, Jinxin [1 ]
Webb, Thomas [1 ]
Liu, Xueping [1 ]
Liu, Dongtao [1 ]
Ren, Aobo [1 ]
Xiang, Yuren [1 ]
Li, Bowei [1 ]
Stolojan, Vlad [1 ]
Watson, Trystan [2 ]
Stranks, Samuel D. [3 ,4 ]
Zhang, Wei [1 ]
机构
[1] Univ Surrey, Adv Technol Inst ATI, Guildford GU2 7XH, Surrey, England
[2] Swansea Univ, Coll Engn, SPECIFIC, Bay Campus, Swansea SA1 8EN, Wales
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Cambridge, Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
fast and balanced charge transfer; inverted perovskite solar cells; long-term stability; low-temperature processing; metal oxides; HIGH-PERFORMANCE; NICKEL-OXIDE; HIGHLY EFFICIENT; ROOM-TEMPERATURE; INTERFACE; STABILITY; METHANOFULLERENE; CONTACTS; FILMS;
D O I
10.1002/eem2.12595
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells (PSCs). However, due to some technical difficulties (e.g., intricate fabrication protocols, high-temperature heating process, incompatible solvents, etc.), it is still challenging to achieve efficient and reliable all-metal-oxide-based devices. Here, we developed efficient inverted PSCs (IPSCs) based on solution-processed nickel oxide (NiOx) and tin oxide (SnO2) nanoparticles, working as hole and electron transport materials respectively, enabling a fast and balanced charge transfer for photogenerated charge carriers. Through further understanding and optimizing the perovskite/metal oxide interfaces, we have realized an outstanding power conversion efficiency (PCE) of 23.5% (the bandgap of the perovskite is 1.62 eV), which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials. Thanks to these stable metal oxides and improved interface properties, ambient stability (retaining 95% of initial PCE after 1 month), thermal stability (retaining 80% of initial PCE after 2 weeks) and light stability (retaining 90% of initial PCE after 1000 hours aging) of resultant devices are enhanced significantly. In addition, owing to the low-temperature fabrication procedures of the entire device, we have obtained a PCE of over 21% for flexible IPSCs with enhanced operational stability.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells
    Jing Zhang
    James Mcgettrick
    Kangyu Ji
    Jinxin Bi
    Thomas Webb
    Xueping Liu
    Dongtao Liu
    Aobo Ren
    Yuren Xiang
    Bowei Li
    Vlad Stolojan
    Trystan Watson
    Samuel DStranks
    Wei Zhang
    Energy&EnvironmentalMaterials, 2024, 7 (02) : 244 - 252
  • [2] Progress of solution-processed metal oxides as charge transport layers towards efficient and stable perovskite solar cells and modules
    Zhu, K.
    Chen, Y.
    Wang, Y.
    Feng, M.
    Zhao, Y.
    MATERIALS TODAY NANO, 2022, 20
  • [3] Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells
    Shin, Seong Sik
    Lee, Seon Joo
    Seok, Sang Il
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (47)
  • [4] Solution-Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells
    Ouyang, Dan
    Huang, Zhanfeng
    Choy, Wallace C. H.
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (01)
  • [5] Solution-Processed Metal Ion Polyelectrolytes as Hole Transport Materials for Efficient Inverted Perovskite Solar Cells
    Shoukat, Faiza
    Kang, Ju Hwan
    Khan, Yeasin
    Park, Yu Jung
    Lee, Jin Hee
    Walker, Bright
    Seo, Jung Hwa
    ADVANCED MATERIALS INTERFACES, 2023, 10 (17)
  • [6] Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers
    You J.
    Meng L.
    Song T.-B.
    Guo T.-F.
    Chang W.-H.
    Hong Z.
    Chen H.
    Zhou H.
    Chen Q.
    Liu Y.
    De Marco N.
    Yang Y.
    Nature Nanotechnology, 2016, 11 (1) : 75 - 81
  • [7] Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers
    You, Jingbi
    Meng, Lei
    Song, Tze-Bin
    Guo, Tzung-Fang
    Yang, Yang
    Chang, Wei-Hsuan
    Hong, Ziruo
    Chen, Huajun
    Zhou, Huanping
    Chen, Qi
    Liu, Yongsheng
    De Marco, Nicholas
    Yang, Yang
    NATURE NANOTECHNOLOGY, 2016, 11 (01) : 75 - +
  • [8] Efficient and Stable Vacuum-Free-Processed Perovskite Solar Cells Enabled by a Robust Solution-Processed Hole Transport Layer
    Chang, Chih-Yu
    Tsai, Bo-Chou
    Hsiao, Yu-Cheng
    CHEMSUSCHEM, 2017, 10 (09) : 1981 - 1988
  • [9] Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide
    Anaraki, Elham Halvani
    Kermanpur, Ahmad
    Steier, Ludmilla
    Domanski, Konrad
    Matsui, Taisuke
    Tress, Wolfgang
    Saliba, Michael
    Abate, Antonio
    Gratzel, Michael
    Hagfeldt, Anders
    Correa-Baena, Juan-Pablo
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) : 3128 - 3134
  • [10] Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells
    Guo, Qiang
    Wang, Chenyun
    Li, Jinyan
    Bai, Yiming
    Wang, Fuzhi
    Liu, Lin
    Zhang, Bing
    Hayat, Tasawar
    Alsaedi, Ahmed
    Tan, Zhan'ao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (33) : 21746 - 21754