Cluster and cloud computing for life sciences

被引:0
|
作者
Carretero, Jesus [1 ]
Krefting, Dagmar [2 ]
机构
[1] Univ Carlos III Madrid, Comp Architecture & Technol, Madrid, Spain
[2] Inst Med Informat, Gottingen, Germany
关键词
Bioinformatics; Biomedicine; And health; Genomics; Life sciences; Cloud computing; Workflows; Biomedical informatics;
D O I
10.1016/j.future.2023.10.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computational methods are nowadays ubiquitous in the field of bioinformatics and biomedicine. Besides established fields like molecular dynamics, genomics or neuroimaging, new emerging methods rely heavily on large scale computational resources to manage Terabytes or Petabytes of data and TeraFlops or PetaFlops of computing power for simulating highly complex models, or many-task processes and workflows for processing and analysing data.This special issue contains papers presenting novel aspects of security and performance in infrastructures used for applications in the Life Sciences, optimizations for popular applications, such as genomics and pandemic modelling, and contributions related to new algorithms joining machine learning and data processing platforms to increase the efficiency and accuracy of bioinformatics.
引用
收藏
页码:254 / 256
页数:3
相关论文
共 50 条
  • [1] Governance of Cloud Computing Services for the Life Sciences
    Dzombeta, Srdan
    Stantchev, Vladimir
    Colomo-Palacios, Ricardo
    Brandis, Knud
    Haufe, Knut
    [J]. IT PROFESSIONAL, 2014, 16 (04) : 30 - 37
  • [2] Cloud Computing for the Sciences
    Sullivan, Francis
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2009, 11 (04) : 10 - 11
  • [3] Hybrid cloud and cluster computing paradigms for life science applications
    Judy Qiu
    Jaliya Ekanayake
    Thilina Gunarathne
    Jong Youl Choi
    Seung-Hee Bae
    Hui Li
    Bingjing Zhang
    Tak-Lon Wu
    Yang Ruan
    Saliya Ekanayake
    Adam Hughes
    Geoffrey Fox
    [J]. BMC Bioinformatics, 11
  • [4] Hybrid cloud and cluster computing paradigms for life science applications
    Qiu, Judy
    Ekanayake, Jaliya
    Gunarathne, Thilina
    Choi, Jong Youl
    Bae, Seung-Hee
    Li, Hui
    Zhang, Bingjing
    Wu, Tak-Lon
    Ruan, Yang
    Ekanayake, Saliya
    Hughes, Adam
    Fox, Geoffrey
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [5] Grid, Cluster and Cloud Computing
    Keahey, K.
    Laforenza, D.
    Reinefeld, A.
    Ritrovato, P.
    Thain, D.
    Wilkins-Diehr, N.
    [J]. EURO-PAR 2010 PARALLEL PROCESSING, PT I, 2010, 6271 : 341 - +
  • [6] Cloud-Dew Computing Support for Automatic Data Analysis in Life Sciences
    Brezany, Peter
    Ludescher, Thomas
    Feilhauer, Thomas
    [J]. 2017 40TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2017, : 365 - 370
  • [7] The Differences Among Cloud Computing, Cluster Computing And Grid Computing
    Wang, Mu-kuai
    Li, Dao-guo
    Fu, Bin
    [J]. 2010 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (MSE 2010), VOL 3, 2010, : 78 - 81
  • [8] Deep computing for the life sciences
    Swope, WC
    [J]. IBM SYSTEMS JOURNAL, 2001, 40 (02) : 248 - 262
  • [9] Life Sciences Computing INTRODUCTION
    Jepsen, Thomas
    Fiaidhi, Jinan
    Djavanshir, Reza
    [J]. IT PROFESSIONAL, 2014, 16 (04) : 21 - 23
  • [10] On the cluster admission problem for cloud computing
    Dierks, Ludwig
    Kash, Ian A.
    Seuken, Sven
    [J]. Journal of Artificial Intelligence Research, 2021, 71 : 1 - 40