Two-step Machine Learning Assisted Extraction of VCSEL parameters

被引:0
|
作者
Khan, Ihtesham [1 ]
Masood, Muhammad Umar [1 ]
Tunesi, Lorenzo [1 ]
Ghillino, Enrico [2 ]
Carena, Andrea [1 ]
Curri, Vittorio [1 ]
Bardella, Paolo [1 ]
机构
[1] Politecn Torino, Dept Elect & Telecommunicat, Turin, Italy
[2] Synopsys Inc, Ossining, NY 10562 USA
关键词
Vertical Cavity Surface Emitting Lasers; Machine Learning; Deep Learning; Parameters Extraction;
D O I
10.1117/12.2650220
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a Machine Learning (ML) assisted procedure to extract Vertical Cavity Surface Emitting Lasers (VCSELs) parameters from Light-Current (L-I) and S21 curves using a two-step algorithm to ensure high accuracy of the prediction. In the first step, temperature effects are not included and a Deep Neural Network (DNN) is trained on a dataset of 10000 mean-field VCSEL simulations, obtained changing nine temperature-independent parameters. The agent is used to retrieve those parameters from experimental results at a fixed temperature. Secondly, additional nine temperature-dependent parameters are analyzed while keeping as constant the extracted ones and changing the operation temperature. In this way a second dataset of 10000 simulations is created and a new agent in trained to extract those parameters from temperature-dependent L-I and S21 curves.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Machine-Learning-Assisted Two-Step Antenna Modelling Method
    Wu, Qi
    Yin, Jiexi
    Yu, Chen
    Wang, Haiming
    Hong, Wei
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 1043 - 1044
  • [2] A Two-Step Method for Estimating the Parameters of Induction Machine Models
    Laughman, Christopher
    Leeb, Steven B.
    Norford, Leslie K.
    Shaw, Steven R.
    Armstrong, Peter R.
    [J]. 2009 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, VOLS 1-6, 2009, : 671 - +
  • [3] Two-step machine learning enables optimized nanoparticle synthesis
    Flore Mekki-Berrada
    Zekun Ren
    Tan Huang
    Wai Kuan Wong
    Fang Zheng
    Jiaxun Xie
    Isaac Parker Siyu Tian
    Senthilnath Jayavelu
    Zackaria Mahfoud
    Daniil Bash
    Kedar Hippalgaonkar
    Saif Khan
    Tonio Buonassisi
    Qianxiao Li
    Xiaonan Wang
    [J]. npj Computational Materials, 7
  • [4] Two-step machine learning enables optimized nanoparticle synthesis
    Mekki-Berrada, Flore
    Ren, Zekun
    Huang, Tan
    Wong, Wai Kuan
    Zheng, Fang
    Xie, Jiaxun
    Tian, Isaac Parker Siyu
    Jayavelu, Senthilnath
    Mahfoud, Zackaria
    Bash, Daniil
    Hippalgaonkar, Kedar
    Khan, Saif
    Buonassisi, Tonio
    Li, Qianxiao
    Wang, Xiaonan
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [5] A two-step machine learning method for casualty prediction under emergencies
    Hu, Xiaofeng
    Hu, Jinming
    Hou, Miaomiao
    [J]. JOURNAL OF SAFETY SCIENCE AND RESILIENCE, 2022, 3 (03): : 243 - 251
  • [6] Two-Step Machine Translation with Lattices
    Jawaid, Bushra
    Bojar, Ondrej
    [J]. LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 682 - 686
  • [8] A Two-Step Machine Learning Method for Predicting the Formation Energy of Ternary Compounds
    Rengaraj, Varadarajan
    Jost, Sebastian
    Bethke, Franz
    Plessl, Christian
    Mirhosseini, Hossein
    Walther, Andrea
    Kuehne, Thomas D.
    [J]. COMPUTATION, 2023, 11 (05)
  • [9] The relative importance of ESG pillars: A two-step machine learning and analytical framework
    Mashayekhi, Bita
    Asiaei, Kaveh
    Rezaee, Zabihollah
    Jahangard, Amin
    Samavat, Milad
    Homayoun, Saeid
    [J]. SUSTAINABLE DEVELOPMENT, 2024,
  • [10] Coronary artery decision algorithm trained by two-step machine learning algorithm
    Kim, Young Woo
    Yu, Hee-Jin
    Kim, Jung-Sun
    Ha, Jinyong
    Choi, Jongeun
    Lee, Joon Sang
    [J]. RSC ADVANCES, 2020, 10 (07) : 4014 - 4022