Approaches to estimate bidirectional causal effects using Mendelian randomization with application to body mass index and fasting glucose

被引:2
|
作者
Zou, Jinhao [1 ]
Talluri, Rajesh [1 ,2 ]
Shete, Sanjay [1 ,3 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[2] Univ Mississippi, Med Ctr, Dept Data Sci, Jackson, MS USA
[3] Univ Texas Md Anderson Canc Ctr, Dept Epidemiol, Houston, TX 77030 USA
来源
PLOS ONE | 2024年 / 19卷 / 03期
关键词
WEAK INSTRUMENTS; BIAS; INFERENCE; VARIABLES; DISEASE; DESIGN;
D O I
10.1371/journal.pone.0293510
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mendelian randomization (MR) is an epidemiological framework using genetic variants as instrumental variables (IVs) to examine the causal effect of exposures on outcomes. Statistical methods based on unidirectional MR (UMR) are widely used to estimate the causal effects of exposures on outcomes in observational studies. To estimate the bidirectional causal effects between two phenotypes, investigators have naively applied UMR methods separately in each direction. However, bidirectional causal effects between two phenotypes create a feedback loop that biases the estimation when UMR methods are naively applied. To overcome this limitation, we proposed two novel approaches to estimate bidirectional causal effects using MR: BiRatio and BiLIML, which are extensions of the standard ratio, and limited information maximum likelihood (LIML) methods, respectively. We compared the performance of the two proposed methods with the naive application of UMR methods through extensive simulations of several scenarios involving varying numbers of strong and weak IVs. Our simulation results showed that when multiple strong IVs are used, the proposed methods provided accurate bidirectional causal effect estimation in terms of median absolute bias and relative median absolute bias. Furthermore, compared to the BiRatio method, the BiLIML method provided a more accurate estimation of causal effects when weak IVs were used. Therefore, based on our simulations, we concluded that the BiLIML should be used for bidirectional causal effect estimation. We applied the proposed methods to investigate the potential bidirectional relationship between obesity and diabetes using the data from the Multi-Ethnic Study of Atherosclerosis cohort. We used body mass index (BMI) and fasting glucose (FG) as measures of obesity and type 2 diabetes, respectively. Our results from the BiLIML method revealed the bidirectional causal relationship between BMI and FG in across all racial populations. Specifically, in the White/Caucasian population, a 1 kg/m2 increase in BMI increased FG by 0.70 mg/dL (95% confidence interval [CI]: 0.3517-1.0489; p = 8.43x10-5), and 1 mg/dL increase in FG increased BMI by 0.10 kg/m2 (95% CI: 0.0441-0.1640; p = 6.79x10-4). Our study provides novel findings and quantifies the effect sizes of the bidirectional causal relationship between BMI and FG. However, further studies are needed to understand the biological and functional mechanisms underlying the bidirectional pathway.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Approaches to Estimate Bidirectional Causal Effects Using Mendelian Randomization
    Zou, Jinhao
    Talluri, Rajesh
    Shete, Sanjay
    [J]. GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 550 - 550
  • [2] An approach to estimate bidirectional mediation effects with application to body mass index and fasting glucose
    Talluri, Rajesh
    Shete, Sanjay
    [J]. ANNALS OF HUMAN GENETICS, 2018, 82 (06) : 396 - 406
  • [3] Causal association of body mass index with hypertension using a Mendelian randomization design
    Lee, Mee-Ri
    Lim, Youn-Hee
    Hong, Yun-Chul
    [J]. MEDICINE, 2018, 97 (30)
  • [4] Bidirectional Mendelian randomization to explore the causal relationships between body mass index and polycystic ovary syndrome
    Brower, M. A.
    Hai, Y.
    Jones, M. R.
    Guo, X.
    Chen, Y. -D. I.
    Rotter, J. I.
    Krauss, R. M.
    Legro, R. S.
    Azziz, R.
    Goodarzi, M. O.
    [J]. HUMAN REPRODUCTION, 2019, 34 (01) : 127 - 136
  • [5] Causal Effects of Body Mass Index on Cardiometabolic Traits and Events: A Mendelian Randomization Analysis
    Holmes, Michael V.
    Lange, Leslie A.
    Palmer, Tom
    Lanktree, Matthew B.
    North, Kari E.
    Almoguera, Berta
    Buxbaum, Sarah
    Chandrupatla, Hareesh R.
    Elbers, Clara C.
    Guo, Yiran
    Hoogeveen, Ron C.
    Li, Jin
    Li, Yun R.
    Swerdlow, Daniel I.
    Cushman, Mary
    Price, Tom S.
    Curtis, Sean P.
    Fornage, Myriam
    Hakonarson, Hakon
    Patel, Sanjay R.
    Redline, Susan
    Siscovick, David S.
    Tsai, Michael Y.
    Wilson, James G.
    van der Schouw, Yvonne T.
    FitzGerald, Garret A.
    Hingorani, Aroon D.
    Casas, Juan P.
    de Bakker, Paul I. W.
    Rich, Stephen S.
    Schadt, Eric E.
    Asselbergs, Folkert W.
    Reiner, Alex P.
    Keating, Brendan J.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 94 (02) : 198 - 208
  • [6] Increased Body Mass Index and Increased Risk of Ischemic Heart Disease: Using Genomewide Association Results to Estimate Causal Effects With Mendelian Randomization
    Nordestgaard, Borge G.
    Timpson, Nic
    Palmer, Tom
    Zacho, Jeppe
    Benn, Marianne
    Tybjrg-Hansen, Anne
    Smith, George Davey
    [J]. CIRCULATION, 2010, 122 (21)
  • [7] Understanding causal pathways between bone mineral density, body mass index and osteoarthritis using bidirectional and multivariable Mendelian randomization
    Hartley, April
    Sanderson, Eleanor
    Granell, Raquel
    Paternoster, Lavinia
    Zheng, Jie
    Smith, George Davey
    Southam, Lorraine
    Hatzikotoulas, Konstantinos
    Boer, Cindy G.
    van Meurs, Joyce
    Zeggini, Eleftheria
    Gregson, Celia L.
    Tobias, Jon H.
    [J]. JOURNAL OF BONE AND MINERAL RESEARCH, 2020, 35 : 172 - 173
  • [8] Using multivariable Mendelian randomization to estimate the causal effect of bone mineral density on osteoarthritis risk, independently of body mass index
    Hartley, April
    Sanderson, Eleanor
    Granell, Raquel
    Paternoster, Lavinia
    Zheng, Jie
    Smith, George Davey
    Southam, Lorraine
    Hatzikotoulas, Konstantinos
    Boer, Cindy G.
    van Meurs, Joyce
    Zeggini, Eleftheria
    Consortium, Genetics Of Osteoarthritis
    Gregson, Celia L.
    Tobias, Jon H.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2022, 51 (04) : 1254 - 1267
  • [9] Mendelian randomization supports the causal role of fasting glucose on periodontitis
    Wang, Yi
    Chu, Tengda
    Gong, Yixuan
    Li, Sisi
    Wu, Lixia
    Jin, Lijian
    Hu, Rongdang
    Deng, Hui
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [10] Association of Body Mass Index and Parkinson Disease A Bidirectional Mendelian Randomization Study
    Domenighetti, Cloe
    Sugier, Pierre-Emmanuel
    Ashok Kumar Sreelatha, Ashwin
    Schulte, Claudia
    Grover, Sandeep
    Portugal, Berta
    Lee, Pei-Chen
    May, Patrick
    Bobbili, Dheeraj
    Radivojkov Blagojevic, Milena
    Lichtner, Peter
    Singleton, Andrew B.
    Hernandez, Dena
    Edsall, Connor
    Mellick, George D.
    Zimprich, Alexander A.
    Pirker, Walter
    Rogaeva, Ekaterina A.
    Lang, Anthony E.
    Koks, Sulev
    Taba, Pille
    Lesage, Suzanne
    Brice, Alexis
    Corvol, Jean-Christophe
    Chartier-Harlin, Marie-Christine
    Mutez, Eugenie
    Brockmann, Kathrin
    Deutschlander, Angela B.
    Hadjigeorgiou, Georgios M.
    Dardiotis, Efthimios
    Stefanis, Leonidas
    Simitsi, Athina Maria
    Valente, Enza Maria
    Petrucci, Simona
    Straniero, Letizia
    Zecchinelli, Anna L.
    Pezzoli, Gianni
    Brighina, Laura
    Ferrarese, Carlo
    Annesi, Grazia
    Quattrone, Andrea
    Gagliardi, Monica
    Matsuo, Hirotaka
    Nakayama, Akiyoshi
    Hattori, Nobutaka
    Nishioka, Kenya
    Chung, Sun Ju
    Kim, Yun Joong
    Kolber, Pierre
    Van De Warrenburg, Bart P. C.
    [J]. NEUROLOGY, 2024, 103 (03)